

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited.

IMPLEMENTING
SIMULATION DESIGN OF EXPERIMENTS AND

REMOTE EXECUTION ON A
HIGH PERFORMANCE COMPUTING CLUSTER

by

Adam J. Peters

September 2007

 Thesis Advisor: Paul Sanchez
 Second Reader: Jon Alt

THIS PAGE INTENTIONALLY LEFT BLANK

 i

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction
Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2007

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE Implementing Simulation Design of
Experiments and Remote Execution on a High Performance Computing
Cluster

6. AUTHOR(S) Adam J. Peters

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis focused on creating an object-oriented software architecture around which tools can be created to increase
the usability of stochastic simulations such as IWARS and Pythagoras on high performance computing clusters. The
objective of the architecture was to enable the user to design and execute simulation experiments using a platform-
independent client and server to create a common interface for various simulations. The interface input is used to
select the experimental factors of interest to the research analyst and then to create the scenario files for each
simulation run with minimal human intervention. To develop the architecture the current state of the art was explored, a
proposed process flow was developed. This process flow was then vetted by operations researchers from several
organizations. A prototype application was developed based on the software architecture. The prototype revealed
great benefit in this type of tool.

15. NUMBER OF
PAGES

109

14. SUBJECT TERMS
Design of Experiment, Simulation, Automation, Robust Design, Database, Process
Reengineering

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

Approved for public release; distribution is unlimited.

IMPLEMENTING SIMULATION DESIGN OF EXPERIMENTS
AND REMOTE EXECUTION ON A

HIGH PERFORMANCE COMPUTING CLUSTER

Adam J. Peters
Captain, United States Army

B.S., University of Pittsburgh, 1997

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN
INFORMATION TECHNOLOGY MANAGEMENT

from the

NAVAL POSTGRADUATE SCHOOL
September 2007

Author: Adam J. Peters

Approved by: Paul Sanchez
Thesis Advisor

Jon Alt
Second Reader

Dan Boger
Chairman, Information Sciences Department

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

ABSTRACT

This thesis focused on creating an object-oriented software architecture

around which tools can be created to increase the usability of stochastic

simulations such as IWARS and Pythagoras on high performance computing

clusters. The objective of the architecture was to enable the user to design and

execute simulation experiments using a platform-independent client and server to

create a common interface for various simulations. The interface input is used to

select the experimental factors of interest to the research analyst and then to

create the scenario files for each simulation run with minimal human intervention.

To develop the architecture the current state of the art was explored, a proposed

process flow was developed. This process flow was then vetted by operations

researchers from several organizations. A prototype application was developed

based on the software architecture. The prototype revealed great benefit in this

type of tool.

 vi

THIS PAGE INTENTIONALLY LEFT BLANK

 vii

TABLE OF CONTENTS

I. INTRODUCTION ... 1
A. PURPOSE.. 1
B. OBJECTIVE ... 1
C. EXPECTED BENEFIT.. 2
D. ORGANIZATION OF THE THESIS.. 2

II. BACKGROUND AND RELATED WORK... 5
A. BACKGROUND ... 5

1. Simulation .. 5
2. Design of Experiment.. 6
3. Cluster Computing .. 8

B. RELATED WORK .. 9
1. Software Packages for Design of Experiments..................... 9
2. The Tiller... 11
3. Conclusion ... 12

III. ANALYSIS OF CURRENT TECHNIQUES ... 15
A. DESIGN OF EXPERIMENT ... 15

1. Current Method .. 15
a. Select Factors ... 17
b. Determine Factor Type ... 18
c. Define Range and Resolution 19
d. Define Set .. 20
e. Select Factors in Design; Select Design Type 20
f. Create Design Point Values 21
g. Select Number of Replications and/or Termination. 21

2. Analysis.. 22
B. DESIGN POINT FILE CREATION ... 23

1. Current Method .. 23
a. Locate Factor .. 23
b. Change Factor Value .. 25
c. Save as ‘DesignPointN’ .. 26

2. Analysis.. 27
C. SIMULATION PROCESSING .. 27

1. Current Method .. 27
a. Desktop Processing.. 27
b. Cluster Processing ... 29

2. Analysis.. 31
a. Desktop Processing.. 31
b. Cluster Processing ... 31

D. CONCLUSION ... 32

IV. SYSTEM REQUIREMENTS.. 35
A. USER ARCHITECTURE REQUIREMENTS 35

 viii

1. Usability.. 35
a. Training.. 35
b. Error Recovery .. 36
c. System Feedback.. 36

2. Accessibility... 36
a. Remote Access ... 37
b. User Platform .. 37

3. Security .. 37
a. Authenticate Users ... 38
b. Maintain Data Integrity.. 38
c. Protects user data and transactions 38

B. DEVELOPER ARCHITECTURE REQUIREMENTS 38
1. Modifiability.. 38
2. Extensibility.. 38

a. Adding Design Algorithms... 38
b. Adding Simulations .. 39

3. Maintainability.. 39
4. Portability ... 39

a. Server Operating System Dependency 39
C. ACTIVITY DIAGRAM OF PROPOSED SYSTEM 39

1. Design of Experiment Development 39
a. Open Base Case File... 40
b. Find and Display Factors ... 42
c. Locate and Select Factors.. 42
d. Determine Factor Type; Define Range and

Resolution; Define Set.. 43
e. Select Factors in Design; Select Design Type;

Select Number of Replications and/ or
Termination ... 43

f. Conclusion .. 44
2. Design Point File Creation and Simulation Processing 44

a. Request Experiment Run ... 44
b. Create Design Point Values 44
c. Open Base Case File; Change Factor Value; Save

as DesignPointN ... 46
d. Create Cluster Submission File; Start Cluster Run.. 46
e. Notify User That Results are Available; User

Retrieves Results.. 47
D. DATA MODEL OF PROPOSED SYSTEM... 47
E. CONCLUSION ... 55

V. DESIGN OF PROTOTYPE APPLICATION .. 57
A. METHODOLOGY AND PATTERNS.. 57

1. Incremental Development ... 57
a. Justification... 57
b. Planned Increments.. 58

 ix

2. Architectural Patterns ... 59
a. Model-View-Controller .. 59
b. Client-Server.. 61

B. IMPLEMENTATION DECISIONS... 61
1. User Interface... 61
2. Language.. 62
3. Servers ... 64
4. Computing Cluster and Cluster Controller.......................... 65
5. Database... 65

C. DEVELOPMENT TOOLS... 66
1. Eclipse, Subclipse ... 66
2. Development Platform... 67

VI. PROTOTYPE IMPLEMETATION ... 69
A. INCREMENT ONE (SYSTEM BACKBONE)...................................... 69

1. Remote Access .. 69
2. Upload Files to Server... 70

B. INCREMENT TWO (SECURITY AND CLUSTER INTEGRATION) ... 71
1. Protect User Transactions .. 72
2. Authenticate Users .. 72
3. Cluster Integration and System Feedback 73

C. INCREMENT THREE (SIMULATION INTEGRATION)...................... 73
1. Adding Simulations ... 74
2. Request Experiment Run .. 75

D. INCREMENT FOUR (START TRUE DESIGN OF EXPERIMENT) 76
1. Find and Display Factors .. 77

E. CONCLUSION ... 79

VII. CONCLUSIONS AND FUTURE RESEARCH .. 83
A. SUMMARY... 83
B. CONCLUSIONS... 83
C. FUTURE RESEARCH.. 84

LIST OF REFERENCES ... 87

BIBLIOGRAPHY ... 91

INITIAL DISTRIBUTION LIST ... 93

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

LIST OF FIGURES

Figure 1. Current DOE Process... 16
Figure 2. Current Design Point File Creation and Simulation Processing

Process .. 24
Figure 3. Proposed Design of Experiment Process ... 41
Figure 4. Proposed Design Point File and Simulation Processing..................... 45
Figure 5. Entity Relationship Diagram of Proposed System 49
Figure 6. Main Application Page.. 71
Figure 7. User Denied Access to Add Simulations .. 73
Figure 8. Simulation Creation Feedback ... 74
Figure 9. New Design of Experiment with Base Case File Pre-Selected........... 76
Figure 10. Expandable/ Collapsible List .. 80

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiii

ACKNOWLEDGMENTS

I would like to acknowledge the following without whom this thesis would

not have been completed:

My wife, Catherine, and daughter, Caitlin, for patience and unquestioning love
Prof. Sanchez for guidance and encouragement

LTC Thomas Cook for mentoring throughout my education and patience with my
undergrad level questions.

My classmates especially Jeff Withee, Eddie Pena, Brian Rideout, Rusty Dash,
Bob Creigh et al. for aiding in my learning process through various projects,

classes and conversations.
SEED Center and the International Data Farming Workshop 14 were invaluable

to understanding the design of experiment process.

And of course, many thanks to God – Gloria in Excelsis Deo.

 xiv

THIS PAGE INTENTIONALLY LEFT BLANK

1

I. INTRODUCTION

A. PURPOSE
Simulation analysts are an invaluable asset to the Department of Defense.

Each year their research potentially saves the DoD billions through more efficient

operations, better procurement and decision support. The skill and experience

necessary for these researchers to perform effectively can only be found in a

small group of individuals. The skills necessary are normally gained through a

graduate level education and the experience comes from either extended service

in the military or from having long term exposure to those who have served.

The analysts provide the DoD with expert and timely answers to questions

regarding equipment procurement, equipment mix and optimal utilization of the

goods that they already possess. However, some of processes in the critical

path to garnering these answers are unnecessarily cumbersome and error prone.

Additionally, some of the knowledge necessary to expedite the process is

clumped in a very small group of individuals.

Creating design point files from analyst input and allocating those files to a

a high performance computing cluster are processes which when improved, will

greatly increase analyst productivity. Several steps must be taken in order to

improve each process. First the current state must be studied and a general

model created of the process. Next the desired qualities of the end state solution

will be elicited. Finally the proposed solution will be developed and prototyped.

B. OBJECTIVE
This thesis will create a generalized model of the processes required to

develop a simulation design of experiment, create the design point files and the

allocation those files to a computing cluster. Creating this model will aid in

determining what steps of the process can be automated to the greatest

advantage of the researchers. For the steps or subprocess that can be

automated the model will aid in the creation of a prototype system.

2

The prototype will be developed using the model-view-controller design

pattern. Model-view-controller design pattern separates the logic for data

handling (model), the user interface (view) and the business logic (controller).

This will help insure that the components of the application are decoupled so that

the application can be extended with different cluster controllers, simulations and

desigh of experiment algorithms.

This thesis also aims to increase the ease of using of a computing cluster

to further increase the return on investment in operations researchers. A

computing cluster is a group of computer processor under the control of a single

interface. The interface for the computing cluster will be integrated into the

prototype described above.

C. EXPECTED BENEFIT
Automating the process of creating design point files and submitting the

files to a high performance computing cluster will simplify an arduous process,

enabling analysts to concentrate on their areas of interest rather than working on

data entry and cluster controller programming.

The target population for extracting process information and current

methods of design of experiments are Operations Research students, faculty,

and analysts on the Naval Postgraduate School campus, including the U.S. Army

TRADOC Analysis Center – Monterey. The results of this thesis are targeted

toward improving productivity for these researchers; however the overall goal is

to generalize the process enough so that it can eventually be applied to any

design, simulation and cluster combination.

D. ORGANIZATION OF THE THESIS
Chapter II begins with background information primarily for persons

outside of the Operations Research field. It then discusses pertinent work by

other authors in automated design of experiment. Chapter III describes the

current process of design of experiment, design file creation and simulation

cluster runs. This chapter also describes the observed shortcomings of these

processes. The fourth chapter describes the system and architectural

requirements necessary in order to bridge the gap between the current process

3

and the proposed process of running a simulation at multiple design points on a

remote computer cluster. The fifth chapter explains the design decisions made in

order to create a working prototype of the proposed architecture. Next the

process of implementing the prototype on a high performance computer cluster is

described. The final chapter of the thesis summarizes the research findings and

provides areas for future research.

4

THIS PAGE INTENTIONALLY LEFT BLANK

5

II. BACKGROUND AND RELATED WORK

The first section of this chapter provides background information mainly

for readers who are not familiar with modeling and simulation. The second

section of this chapter describes the current state of affairs in automating the

simulation process.

A. BACKGROUND
1. Simulation
The impetus behind most scientific study is to create a better model of

how the natural world works. The model is then exploited to improve

understanding of the natural world in situations where the system under study

cannot be tested in the real world due to time, cost or ethical constraints. In the

abstract, a model is a transformation function, which turns inputs into outputs.

Factors are transformation inputs that a researcher can change, and we are often

interested in characterizing how the system output changes based on the factor

values. If the model is a set of mathematical equations, we may be able to find

closed-form analytical solutions to describe its input/output behaviors, but

analyzing models in this way is possible only when the model is very simple. In

the early years of the Computer Age we began programmatically representing

models that were too complex to solve analytically. We then used the computer

program to study the system of interest. A model that is a computer program is

called a simulation [Law & Kelton, 2000], because it works by mimicking the

behavior of the real system. As computers have become more powerful, we have

been able to model larger and more complex systems using simulation.

In many real-world systems, such as where human behavior is being

studied, the outcomes cannot be predicted with precision. We often use

randomness to model such systems. This adds another layer of complexity –

each time you work through the model, you may come up with a different set of

results. Models involving randomness are called stochastic models, and must be

studied using statistical techniques.

6

The use of simulation to evaluate stochastic and large deterministic

models greatly increases an analyst’s ability to more closely replicate the

processes occurring in the natural world.

2. Design of Experiment
Proper experiments should not be run haphazardly. If the researcher

wishes to arrive at valid conclusions they must set up experiments in such a way

as to ensure that any conclusions derived from the results of the experiment are

reflective of the model’s behavior rather than the method used to study the

model.

Statisticians, operations researchers and mathematicians have created

volumes of work regarding how to effectively design experiments to most

thoroughly and efficiently examine models. Much of the work pertinent to this

thesis attempts to create a balance between two of the main qualities of the

experiment design, thoroughness and efficiency. The following paragraphs

present a few of the considerations in the design of experiment process . A good

starting point for a more thorough understanding of design of experiments can be

found in A User’s Guide to the Brave New World of Designing Simulation

Experiments [Kleijnen, et al., 2005] or Work Smarter, Not Harder: Guidelines for

Designing Simulation Experiments [Sanchez 2006].

The most thorough probing of a model requires that each factor of interest

be iterated over at as many levels as is possible. This design, referred to as a

full factorial or simply a factorial, will generate a huge volume of simulations to

run in all but the simplest of models. For example, consider modeling optimum

automobile fuel efficiency with only three factors, speed, horsepower and fuel

type. We might study speed at integer values from 30 to 75 miles per hour.

Horsepower is likewise a set of integers typically ranging from about 140 to 240

in most cars. Even if we only look at horsepower in five unit increments to keep

the experiment smaller, with only these two factors there are 966 (46 speeds X

21 horsepower levels) possible combinations. Each of these combinations would

have to be run for each type of fuel commercially available, 87, 89 and 91 octane

as well as E85, resulting in 3,864 simulation runs. If we wanted to determine fuel

7

economy on an open road with environmental and traffic conditions, which would

be a stochastic model, the design would get much more complex.

Achieving efficiency in an experimental design is important because

processor time and the time required to complete research are finite and often

strictly bounded for the researcher. As such, the researcher may be tempted to

only set factors at a few levels, which he or she feels will create the largest

effects. In doing so the researcher may end up missing a region of interest, such

as a peak or plateau in the plotted relationships or bend in the curve due to an

interaction. Additionally, by picking and choosing which levels to evaluate the

researcher injects his or her own bias into the outcome of the experiment,

possibly skewing the results.

The above covers the main considerations for deterministic models,

however stochastic models require additional considerations when designing

experiments to explore them. The most significant of these considerations is

replication. As mentioned above, the models must be run repeatedly because

they have an element of chance. Repetition enables the researcher to combine

the results to determine the distributional behavior of the model. The number of

replications must be large enough to give the research enough degrees of

freedom to work with. Larger stochastic models can take hours, days or even

weeks to run. A large number of replications at each design point may not be

practical in these models.

An efficient design is the ultimate goal of the design of experiment

process. An efficient design strikes a balance between the number of

experiments required and the coverage of the factor space. Many methods are

used, such as first looking at a course grid of design points then creating a more

granular design to further investigate interesting regions of the factor space;

using carefully selected fractions of a full factorial design; or using space filling

designs such as Nearly Orthogonal Latin Hypercubes (NOLH) [CIOPPA, 2005],

that go a great distance towards examining factors over broad ranges without

running the experiment factorially. In the example above, the deterministic

8

experiment required over thirty-eight hundred runs to cover the whole design

space for three factors. Even with four additional factors added to the model, the

NOLH design described by Cioppa (2002) reduces the number of design points

required to thoroughly examine the design space to seventeen.

3. Cluster Computing
Once an efficient design is created, the simulation must be run once with

each set of data in the case of a deterministic model. More frequently, however,

we are dealing with stochastic models so the simulation must be run repeatedly

at each design point in order to derive the most likely behavior the model. The

processing time for just one run of a moderately complex model is often

measured in hours. The smallest NOLH experimental design requires seventeen

runs. If each run requires only an hour, but you require thirty replications to

create a statistically valid data set then the experiment will take over twenty-one

days on a single computer.

An experiment’s processing time can be cut substantially by using cluster

computing. A computing cluster is a group of computer processors controlled

through a single interface. Computing clusters increase computing power and

computation speed through one of two methods. First, they can process one job

faster by splitting up the work between the available processors. This method,

referred to as parallel computing, is difficult to achieve based on the high level of

inter-processor coordination often found within a single run. The simulation

developers would have to intentionally write the application code to take

advantage of parallel processing, and many problems cannot be effectively

decomposed to take advantage of parallelization. The second method for

increasing computation speed is to process many separate jobs at the same time

by porting the jobs amongst the available processors. The simulations of interest

to this thesis are not designed to run using parallel computing, so we will focus

on the latter method.

A modest cluster of ten processors, using the method above, would cut

the processing time required to a tenth of what it was. The twenty-one days

spent waiting for results would is cut to just over two days. Even though this is

9

just a linear decrease in processing time, it can be very significant. Researchers

will find it more practical to create and run an efficient design when they can have

the results in a matter of days rather than weeks or months. Add this in with

Moore’s Law and the effect on processing simulations is greatly compounded.

However, based on Gottbrath, et al.’s [1999] work we can conclude that if the

simulation is large enough, it may be best to move with deliberate speed in

putting together your model and design of experiment.

B. RELATED WORK
1. Software Packages for Design of Experiments
Software to automate the design of experiment process was developed

and described almost forty years ago [Kennard, 1969]. Efforts of this sort have

been ongoing since. The results can be lumped into three general categories.

Software packages designed specifically for this purpose, such as the one

referenced above, or add-ons to software to aid in design of experiments,

comprise the first category. The second group is simulations with some sort of

built in design of experiment capability. Simulation packages that can accept

input from a separate data source round out the categories. While each type has

many positive attributes, they lack the ability to provide efficient design of

experiment support to the Department of Defense simulation community.

Software packages designed specifically for design of experiments as well

as statistical software such as JMP [JMP], Microsoft Excel plug-ins such as

Crystal Ball [Crystal Ball], or applications built into spreadsheets [Sanchez 2005]

make up the largest group of electronic aids in design of experiment. They

typically require the user to input the high and low limits of each factor plus the

number of digits of precision to use. The application either has a predetermined

design, such as Kennard’s (1969), or has a set of designs from which the user

must choose. The application then algorithmically changes the factor values,

based on the design. The design output is then displayed in a tabular format for

the user to apply to his or her simulation model.

These applications represent an innovative leap ahead from manual

methods, but lack an interface with the model creation process. As a result the

10

creator of the model and corresponding design of experiment must painstakingly

work through each model input file and insert the factor settings by hand. This

leads to one of our primary motivations for this work. The experimental designs

are algorithmic, so can easily be codified. Most of the designs are openly

published with no claim to use-rights, so they can be used with any model to

create a set of input files for simulation runs.

Simulations with design of experiments built in provide a nice tool for the

simulation in question, but are of questionable value at this point in time. In a

recent review of available simulation software [INFORMS, 2005] only seven out

of the fifty-eight products, from forty-eight vendors, claimed some sort of design

of experiment capability. Upon review of the product documentation (e.g.

TreeAge [TreeAge], SIMPROCESS [SIMPROCESS]) the experimental design

utility is actually a batch parameter input module. The products allow you to

enter your design of experiment, but they do not actually aid you in creating the

experiment design.

Products such as Arena [Arena] and Process Modeler [Process Modeler]

have come to prominence in the business world for optimizing workflow through

process modeling and reengineering. The requirement for extracting

experimental data from a spreadsheet or database was identified and has been

included in these products for the past several years. As a result efficient

designs of experiment can be created in products such as Sanchez’s [2005] and

ported to these simulations. There are two major downsides to this method.

First, you are locked into proprietary simulation software. Many different types of

simulations are necessary in the military to answer the types of questions

important to us. This leads to an issue of time wasted by a researcher learning

how each simulation’s process of extracting data works. In practice, there is a

fair amount of programming necessary. The larger problem, in the case of the

Department of Defense, is scalability. The models of interest to the DoD are

quite large in scale and/or high in resolution. The time it takes to run a simulation

is often measured in hours and sometimes in days or weeks. The majority of

11

simulation packages in question have no utility to launch jobs on a computer

cluster so each simulation is run serially on a single computer processor.

A caveat to the information garnered from the INFORMS [2005] survey of

software is that it does not include simulations used to study the combat models

of interest to this research. However, based on observation of the software that

is used, the military simulation market is in the same state as the business

simulation market. There are many companies, which provide many single

function products with little to no design of experiment or cluster computing

capability. This thesis was specifically tasked by the US Army TRADOC

command at Monterey (TRAC/MRY) to fill this gap for their analysts.

2. The Tiller
The Tiller, developed by Referentia Systems Incorporated [Referentia,

2007], is notable in that is does combine design of experiment, cluster computing

and batch processing in a way that was not previously conceived.

The Tiller was developed for Project Albert, a Marine Corps Warfighter

Lab “research and development effort whose goal is to develop the process and

capabilities of Data Farming [Project Albert, 2007].” The Tiller was primarily

designed for the Map Aware Non-Uniform Automata (MANA) and Pythagoras

simulation packages. The Tiller provided a graphical user interface for factor

selection, selection of factor ranges, design point file creation for batch

processing, and the ability to send simulation jobs to a remote computing cluster

for processing.

The Tiller is a step in the right direction. However, it was completed within

a tightly defined set of constraints, resulting in a highly specialized, inextensible

application. Some of these constraints include limiting available factors through

a ‘roadmap’, and the target simulations.

The ‘roadmap’ is a hard-coded list that provides the Tiller with the

simulation’s farmable factors, i.e., those that are pre-judged as suitable to vary.

In turn, the Tiller lets the user select only these factors. The ‘roadmap’ was a

tradeoff made between thoroughness and ease of use. An exhaustive list of

12

parameter values in a model can range from a couple hundred to tens of

thousands of unique inputs. In an effort to mitigate the size of the listing, the

software design errs on the side of brevity. The difficulty here is that there can be

no consensus on what might be a factor in an experiment. A researcher

examining the effects of unmanned vehicles on squad tactics may consider

‘soldier enemy detection range’ as an immutable constant, while the researcher

examining the effects of chemical protective masks might vary the detection

range as one proxy of the effects of wearing the mask.

The target applications for Tiller use Extensible Markup Language (XML)

to describe their model inputs for simulation. Several other simulations of

interest to Department of Defense researchers, including the Infantry Warrior

Simulation (IWARS) and Combat XXI use XML. If the Tiller had been created in

a more general fashion, for example with no requirement for roadmaps, it could

have been used to design experiments for additional simulation packages.

However, although the Tiller is a great innovation for its target simulations and

experimental designs, its rigidity limits its utility in the broader field of simulation

analysis.

3. Conclusion
Overall, the simulation software market is trudging forward by adding

some labor saving design of experiment data entry and batch processing utilities

to their products. This effort is hampered by two main efforts that simulation

vendors appear to be using to try to gain competitive advantage. These efforts

are modeling and simulation visualization tools, and creating tightly coupled

‘answer to everything’ software packages.

The main thrust of innovation in simulation software today is in adding in

two- and three-dimension visualizations of simulation models. One result of this

is simply flash. The other can be quite useful when used correctly. The process

of building models and running simulations can seem quite abstract to those with

no background in the field. When ‘The Boss’ gets the results of a multi-month

process simulation effort back and all she sees is a spreadsheet and an analyst’s

advice it can seem less than worthwhile – especially since she often feels that

13

she knew how it was going to turn out from the start. When the boss is

presented with a flashy three-dimensional visualization of the current process,

the optimum process, plus the spreadsheet to show her the numeric difference,

the effort seems much more worthwhile. While this may help “sell” the results,

creating the visualization is non-productive time for the analyst.

Visualization of models can make model building easier through ‘drag and

drop’ placement of entities, entity reuse, decreased abstraction, and visual

verification of the model. These tools can open the process of modeling and

simulation up to a broader audience because persons less adept at programming

can now build quite complex models. This is both a boon and a curse. While

visualization makes the process easier, it does not necessarily make it better. If

the person researching the problem hopes to come up with useful answers from

the research, the model must be developed methodically. A person untrained in

the science of programming, simulation or statistics may find the numerous

options, such as choosing between a Poisson distribution and normal distribution

for some process, to be of little use or confusing. As a result the modeler will

select default options, or simply guess at what is best. This leads to invalid

models (though the researcher would not know) and the results of these models

can actually cause great harm to the organization that they were developed to

help. This should not be construed as an elitist viewpoint held by the modeling

and simulation community to preserve egos or jobs. The use of modeling and

simulation has repeatedly proven its worth. The prestige of those trained in

these techniques can only increase with increased use. However, any tool

incorrectly applied is useless and often counterproductive.

The golden goose of commercial software development is to create a

product that thoroughly and completely meets all of the customer’s needs. With

simulation software the goal is no different. The problem with this is that new

applications for simulation, and other software, are developed every day and that

there is no one true set of standards for all models or simulations. Innovation is

good, but one company cannot hope to provide all the answers. Software

companies still strive to do so, though. A company may develop software that is

14

especially good for simulating chemical dispersion in disastrous spills. When

customers request additional functionality from the software, say running the

scenarios on a high-performance computing cluster, the software company

typically folds this function into the current software package. Unfortunately,

cluster computing controllers come in many varieties so it is unlikely that the

simulation software company will create a product that will work with all cluster

controllers – the software that dispatches and coordinates threads or processes

on individual processors in the cluster. The product will likely work well with a

few cluster controllers, until a few months later when the controller software is

upgraded or patched.

A better answer is to provide an open interface to the simulation software

that can easily be accessed to run programs using the client’s cluster controller.

Adding automated components to work with a few of the most common

controllers is worthwhile as long as the user can still access the simulation

processing software through other cluster controllers.

15

III. ANALYSIS OF CURRENT TECHNIQUES

This chapter describes the current process of designing and executing

simulation experiments. The information necessary to develop this chapter was

described in informal interviews and conversations conducted from November

2006 through March 2007 at the Naval Postgraduate School; from the Simulation

Analysis (OA4333) class lectures and readings; and from conversations and

work conducted during the 14th International Data Farming Workshop. Based

upon the collected information, the process was modeled using a Unified

Modeling Language activity diagram (Figures 1 and 2).

The model is not inclusive. Much of the thought behind creating a well

designed experiment is codified [Kleijnen, et al., 2005]. However, some of the

considerations have a great deal of variability based on the researcher’s goals for

the experiment [Kleijnen, et al., 2005]. Finally, some portions of good experiment

design are tacit, so are best learned through doing [Rusco, 2003], and therefore

difficult to codify. The model is composed of those portions that are explicit and

includes as much of the variability as possible.

A. DESIGN OF EXPERIMENT
Design of Experiments (DOE) is a thoughtful process and cannot be taken

lightly. If Operations Research is a science, then the methods used in obtaining

answers must be no less rigorous than those used by pharmaceutical

researchers and chemists. The result of a poorly designed experiment to

determine a proper unmanned vehicle mix is potentially as disastrous as an

improperly designed experiment for a drug clinical trial.

1. Current Method
The model (Figure 1) begins with several assumptions based on the

scope of this research. We assume that the researcher has: 1) framed the

research question; 2) selected the simulation software based on the research

question; 3) selected appropriate measures of performance or measures of

effectiveness; 4) determined the need for response surface complexity; and 5)

built a system model that simulation software can process.

16

Figure 1. Current DOE Process

At the start of the Current DOE Process (Figure 1), we have a working

model that is validated to run on the simulation of choice. The researcher

17

created the model with parameter values that he or she believed to be valid

based on experience, research or a combination of both. Model validation is

another area of current interest in the simulation community [Law & Kelton,

2000], but outside the scope of this thesis.

a. Select Factors
In the first step of the process, the researcher identifies and selects

factors of interest for the experiment. Factors are qualitative or quantitative

inputs of a model, model element or group of model elements that can be varied

and are hypothesized to have some effect on the system’s behavior. Factors are

also referred to as variables.

Conceptually identifying the factors of interest requires extensive

familiarity with the simulation and model. Identifying the factors conceptually

requires that the researcher understands the system well enough so that he or

she can identify what inputs might have an effect on the output. Typically, the

person that creates the model of the system will be the same person that designs

the experiment to study the model. This is not always the case, though. Some

systems under study are large enough that collaboration between several

modelers is essential to create the model accurately, completely and in a timely

manner.

The selection of factors can be completed in several ways.

Sometimes the research sponsor thrusts the factors of interest upon the

researcher, such as in a study of the effect of different equipment packages on

unit performance where the attributes of the equipment are already set. The

factors may also be selected by the researcher, based on his or her experience,

as the attributes that have the greatest impact on the measures of interest. For

example, speed is generally accepted to have an impact on fuel economy, so

most analysts would include speed as a potential factor if fuel economy is the

measure of interest. The selection of factors may also be a collaborative effort

between any of the following: researcher(s); modeler(s); subject matter expert(s);

and the research sponsor(s).

18

Limitations in simulation software can complicate the factor

selection process. In some cases there is not a directly attributable input for a

factor of interest. That is, a simulation is built to allow for certain elements to

interact. Each element has some number of attributes. If the researcher wishes

to study something other than these attributes, he or she must either aggregate

the available attributes to create the effect or use a different attribute as a

substitute to that effect. To illustrate, consider an automobile manufacturer who

wishes to study the effect of adding a spoiler to several prospective car designs

on fuel consumption and handling. The simulation software that the

manufacturer uses does not include a utility to add a spoiler. However, the

simulation does have ‘vehicle drag’ and ‘tire traction’ parameters. The change in

drag and added traction from the spoiler, as calculated by the engineers, can

thus be combined with the substitute parameters ‘vehicle drag’ and ‘tire traction’

to get the same effect as adding a spoiler. This allows the manufacturer to

validly answer the research question they have posed without purchasing or

creating new software specific to the problem.

At the end of the factor selection process a list of factor names is

recorded by pen and paper or in a spreadsheet of individual or commercial

design. We will assume the use of a spreadsheet like Sanchez’s [2005] to

illustrate the rest of the process.

b. Determine Factor Type
The second step modeled in Figure 1 is to determine which type of

factor you are dealing with. Generally, factors can be classed as continuous,

ordinal, and categorical. Continuous data are numeric and correspond to real

numbers. Ordinal data may or may not be numeric but have an ordering

property, e.g., classifying a student as Freshman, Sophomore, Junior, or Senior.

If they are numeric, they correspond to integers. Even if they are not numeric,

they can often be mapped to integers in a meaningful way. Categorical data

(a.k.a. nominal data) have discrete categories but no ordering property, e.g.,

Color = {Red, Green, Blue}, or Gender = {male, female}. Defining the type of

factor is important as it begins to define what types of experimental designs will

19

work best for these factors. For example, continuous and ordinal factors can be

studied with NOLH or factorial designs, while a categorical factor can only be

studied factorially and is often crossed or blocked against the design used for

other factors. Note that although Boolean data are just a special case of

categorical data, we treat it separately in Figure 1 because the binary nature of

Boolean data places significant constraints on the types of designs that can be

applied.

The work that the researcher does in this step is based on his or

her experience with the model and the system under study. The DOE

spreadsheet that contains the names of the factors from the previous step can

now be annotated with the factor types.

c. Define Range and Resolution
For continuous and integer factor types the next step is to define

the upper and lower ranges and the size of the steps between each factor setting

or the precision of the factor settings. The researcher defines the ranges based

on the experience he or she has with the system under study or from input from a

subject matter expert on what is possible and practical in the system. The

ranges may be dictated by the research question if the researcher is working for

another party. Finally, the range may be determined based on the results of a

previous set of simulation runs. A previous experiment may have used a coarse

screen to find the most interesting response areas of the model. Once the

researcher has narrowed down what ranges yield the responses of greatest

interest he or she may wish to create a tighter grid around this area to explore it

more thoroughly.

The resolution of a factor refers to either the decimal precision that

the researcher wishes or the size of the step between each factor setting. The

decimal precision is only defined for continuous factors. Knowledge from the

researcher’s experience or subject matter expert input defines a suitable number

of decimal places. The step size can be defined for either continuous or integer

factors. Step size could either be used for factors that have a very large range or

for factors that have some valid numerical constraint such as in a study of

20

Multiple Launch Rocket System ammunition optimization in some war scenario

where the rockets can only be issued in groups of six because they come in a

preloaded pod, but can be fired one at a time.

For integer and continuous factor types, the DOE spreadsheet

begins to take shape. The ranges and resolutions are entered below the factor

names.

d. Define Set
The remaining factor types can be handled as categorical for the

purpose of his research. The researcher, again based on his or her experience

or subject matter expert input, must define the available settings for the factor of

interest. Booleans can be defined in many ways (e.g., True/False, 0/1). The

researcher must know how their particular simulation defines Boolean, and then

document it. In any case, for DOE purposes a Boolean is just a categorical

factor with only two possible categories. Ordinal and nominal factors can often

be treated the same in DOE. In the final design, the categorical factors will either

be randomly distributed with the numeric factors if there are a large number of

categories they will each be run against a full complement of the numeric portion

of the design (crossed or combined). These considerations bring the researcher

to the next step of the process:

Factors other than integer and continuous are put to the side of the

DOE spreadsheet with their defined sets.

e. Select Factors in Design; Select Design Type
At this point, the researcher is done figuring out what is going to be

in the experiment and begins determining how to fully explore the effects of the

factor on the model. This also seems to be a point at which tacit knowledge is

necessary in order to create a truly efficient experiment. Kleijnen, et al. (2005),

discuss at length the process of selecting the appropriate design based on

number of factors and response surface complexity. The process is depicted as

iterating between selecting factors in the design and selecting the design type for

cases where there is a primary design grid, say NOLH, that contains most of the

21

factors, then crossing it with a gridded design of the remaining factors to yield a

combined design. The process continues until all factors are incorporated in the

design.

f. Create Design Point Values
This step of the process can occur in concert with the previous

steps and either before or after the following step, Select Number of Replications.

The order has no real bearing on the number of replications but it might be useful

to have a grid of the factor values while creating combined designs. This step is

generally completed by some sort of automated system, which takes the results

from the previous steps, particularly the factor range and resolution, and applies

it to some algorithm to generate a set of factor values for each simulation run

required by the design. The automated system generally outputs the data in a

spreadsheet format with each of the factors on one axis and the run number and

enumerated factor settings on the other axis. The full set of factor values for one

simulation run is referred to as a design point.

The DOE spreadsheet scales a design, initially in standardized

units, for each of the factors by using the ranges and resolution in order to come

up with the design point values. Then, based on the researcher’s design

decisions for the remaining factors, the design points may need to be replicated

for each category of the remaining categorical factors.

g. Select Number of Replications and/or Termination
The final step in creating a DOE is to determine the number of

replications and, for steady-state simulations, how long the simulation will run.

As mentioned before this step can occur at an earlier stage of the process,

however the number of design points created in the previous step may have

some impact on the decision made during this step. In a stochastic simulation, it

is necessary to run a model multiple times in order to determine the amount of

variability in the system. The more times you run the simulation, the more

degrees of freedom you have, resulting in improved statistical estimates.

Practically though, the simulation replications are limited by the simulation

processing time. The maximum number of simulation replications is the time

22

available divided by the product of the time it takes to process one simulation and

the number of design points. This is usually complicated by the fact that run

times can vary significantly for different design points.

For steady state simulations, a terminating point must be selected.

These simulations may suffer from initial bias, the affect of the initial conditions of

the simulation on the results during a warm-up period. As a result, the simulation

must run long enough that the researcher can remove some appropriately large

set of initial results and still have a statistically valid set of result data.

These decisions are not used by the DOE spreadsheet but are

annotated by the researcher in order to document his or her overall design

decisions.

2. Analysis
Overall, the current process is quite efficient. Much of creating the DOE is

a mental process rather than a physical process so it is difficult to make it more

efficient other than by formalizing the process, such as in using Study Question

Methodology [Rauhat, 1999].

Some efforts have been made to make the design point creation step

more efficient. Researchers have formalized and codified some designs, such as

factorials, fractional factorials, and Nearly Orthogonal Latin Hypercubes, so that

others do not have to create a design and calculate a ‘goodness’ measure each

time they wish to conduct an experiment.

The two areas that could use improvement in the process as described

are documentation and integration with later processes. There is currently no

formal way for researchers to collaborate asynchronously on a DOE other than

physical transfer of the design, such as by e-mail or an ftp site. A system where

researchers could make and document their decisions would benefit peer

researchers and pedagogy.

Integrating DOE and the creation of design point files will have a slightly

negative effect on the DOE, but will vastly improve the process of creating design

point files. DOE will take more time, as the researcher will work with the

23

physical, rather than conceptual, model, so his decisions can be applied

immediately rather than in a separate process. Integrating these processes and

automating some of the steps in design point file creation will result in a net gain

in productivity for the researcher.

B. DESIGN POINT FILE CREATION
1. Current Method
Much work must be done to make the simulation software able to process

the researcher’s well-designed experiment, but most of that work is just tedious

data entry. The first step is to create individual model files corresponding to each

design point. Figure 2 shows this process.

At the start of Figure 2, we assume that there is a validated working model

and that the researcher has created a DOE based on that model. The DOE is

encoded in a spreadsheet and the model file is available either as a local or

remote resource on a computer. The model file contains nominal values for each

factor based on the modeler’s assumptions about the current state of the system.

We will refer to such a file as the ‘base case file’ through the remainder of the

thesis. Each design point in the DOE is applied to the base case file to create a

corresponding design point file where the factor values specified for the design

point are substituted for the base case factor values.

a. Locate Factor
Once the researcher has opened the base case file, he must find

the factor of interest within the file. Identifying the factors of interest physically

within the model schema requires extensive familiarity with the simulation and

model. Often the person who creates the model of the system will be the same

person who designs the experiment to test the model. Some systems under

study are large enough that collaboration between several modelers is essential

to create the model accurately, completely and in a timely manner.

24
Figure 2. Current Design Point File Creation and Simulation Processing Process

25

The size of the model file and inconsistent naming conventions are

the main obstructions to physically locating the factors of interest. Three primary

factors affect model size, as measured in bytes of data rather than absolute data

file size: the resolution of the model; the requirements of the simulation; and the

number of objects modeled in the system. Model files increase in size as each of

these factors increase, making it difficult to find the factor of interest. For

example, a moderately sized Map Aware Non-Uniform Automata (MANA)

simulation model with four agent types represented in ten ‘squad’ objects with

varying attributes has approximately ten thousand lines of input. Each of the

squads is represented by between four and eight hundred bytes of data. In

MANA models, many of the data pieces are labels. Even if half of the data are

labels this still leaves the researcher to comb through up to four hundred lines in

order to find the particular factor of interest.

MANA’s models are encoded using Extensible Markup Language

(XML), but simulations that require database input are at least as complex. The

Assignment Scheduling Capability for Unmanned Aerial Vehicles (ASC-U)

simulation relies on data in fifty-three tables in a relational database. Neither

MANA nor ASC-U are unusual in this regard.

The naming conventions used in the simulation models are at least

as prohibitive as the size of the files when it comes to rapidly locating factors of

interest. Some elements are named quite clearly, but others are nonsensical,

such as ‘ResOrgUnknown’ in MANA and ‘DFHitobject’ in ASC-U. The software

programmers may consider these names to be self-descriptive, and omit

documentation. These elements may be very important to an experiment, but to

anyone coming behind the programmers the names are gibberish. MANA and

ASC-U are not unique in this regard. The problem of non-obvious nomenclature

occurs in many software applications.

b. Change Factor Value
Once the factor of interest has been located within the base case

file the researcher refers to the DOE spreadsheet to determine the factor value.

26

This value is entered into the model file and the researcher may annotate the

spreadsheet so he or she knows that the work for that step is complete.

The process is repeated until all factors in the design are

exhausted. The researcher determines the next factor of interest, locates that

factor in the base case file, as above, and then changes the value to the design

point value. This process may seem linear, however each time the researcher

needs to locate a factor of interest he has to begin again at the top of the (ten-

thousand-line) file and try to reconcile the conceptual file name in his or her mind

with the physical factor name in the model.

c. Save as ‘DesignPointN’
A base case file’s factors of interest are now altered to reflect one

design point in the DOE. The researcher saves the file with a unique name.

Typically, the file name reflects the arbitrarily numbered design point from the

DOE (e.g. simulationName_modelName_1, simulationName_modelName_2, …,

simulationName_modelName_N).

The overall process of design point file creation repeats until each

set of design point values have been merged into the base case file and saved

with a unique name.

This step and the previous step, Change Factor Value, are fairly

simple, but tedious. Both steps provide a prime area of entry for transcription

errors into the experiment. If performed manually, incorrectly factor value entries

will create spurious results, leading the researcher to misguided conclusions

about the system under study. When the file is saved it is all too easy either to

save over the original or to misnumber the file. This results in the incorrect

pairing of input factor values and output measures of interest. If the effect is

noted, recovery is just as difficult as creating the files in the first place – the

researcher has to go through each file to find which were correctly edited and

saved and which were not.

27

2. Analysis
As mentioned above there are only a few steps to complete this process.

Each step is fairly straightforward. The factors are located in the same location

in each file, but it is easier to open one file at a time than it is to open, save and

keep track of tens or hundreds of such files. The values for each design point

have already been determined so all the researcher has to do is transcribe them

from one place to another.

Computers outperform humans on many tasks. Tasks that require low

variability, high accuracy, high speed and little creativity are ideal candidates for

computing solutions. The design point file creation process has all of these

attributes. Humans perform very poorly in such circumstances. A task with little

variety or creativity drives a human operator toward lower accuracy, and humans

cannot come close to the speed at which a computer processes data.

C. SIMULATION PROCESSING
1. Current Method
The final process of interest to this thesis is the actual processing of the

design point files with the simulation software. At the start of this process we

assume that there is now a set of design point files that are valid in format and

represent the marriage of the base case files and the DOE. The other

assumption is that the researcher has the simulation software available on a

desktop computer, a group of desktops (e.g., a computer lab) or has access,

either locally or remotely, to a high-performance computing cluster with the

simulation software resident.

As modeled above (Figure 2), this process generally takes one of two

tracks. The researcher can run the simulation on a desktop computer or with a

high-performance computer cluster. First, the desktop path will be explored, then

the high-performance computing cluster.

a. Desktop Processing
This method of processing also has two main variants. In the first,

the researcher runs the simulation on his or her office desktop computer or a

spare computer that is not often used. In the other method, the researcher runs

28

simulation on a bank of computers such as in a computer lab. The second

method is often completed late at night or on weekends so as to not draw the ire

of the researcher’s fellow computer lab users. Both methods follow the same

process and net the same results, however using multiple computers may hasten

the completion of the process.

(1). Start Simulation. The researcher opens the

simulation software then runs the simulation with the design point file. Some

researchers are lucky enough to use simulations that have the utility to run

replications from a single design point file. They either output the results in

sequentially number files or concatenate the results onto the end of a single file.

Alternatively, if the researcher knows how to write batch files, which is not

common, he or she can create one to run multiple replications.

(2) Retrieve Simulation Results. The simulation results

are usually returned in one of several formats: a text file of comma separated

values; a formatted text file; or a database. The output filename is either

specified when the simulation is started or created by the simulation.

These two process repeat as many times as necessary to

exhaust all of the design point files and replications required by the DOE. Like

creating design point files, the process is fairly straightforward. Also like design

point file creation, the process is tedious. It is error prone in the same vein and

detracts from the researcher’s ability to do useful work.

Let us explore the time it takes to complete a simple

scenario where the DOE has five factors and each design point must be

replicated ten times. If the researcher chooses a nearly orthogonal Latin

hypercube there are seventeen resultant design points. If the simulation

averages a mere five minutes to run to completion, then the total time for

processing is 14.17 hours (17 design points * 10 replications * 5 minutes / 60

minutes per hour). This is not a vast amount of time until you consider the

equation’s assumption that the researcher is always present at his desk ready to

start the next simulation as soon as the previous one ends; that he keeps perfect

29

track of how many times he has run each design point; and that he keeps perfect

track of which design points he has run.

The time it takes to complete a simulation set is cut linearly

by using a bank of desktops. If the researcher uses five desktop computers,

then, with all prior assumptions, the simulations will be complete in one-fifth of

the time or 2.83 hours. This is much better, but adds in the assumption that the

researcher can move back and forth between the computers with no delays. It

also complicates the task of keeping track of which design point files have been

run and how many times.

b. Cluster Processing
High-performance computing clusters are available for use in the

Department of Defense. Most of the knowledge required to utilize these tools is

specialized and possessed by only a limited number of persons. While the

researcher may have the knowledge required to make runs on a high-

performance computing cluster, it is uncommon. As such, the process described

here will be from the perspective of a researcher who does not possess this

knowledge. This process requires an additional resource, a person who knows

how to run the high-performance computing cluster, which we will call the CSME

(Cluster Subject Matter Expert).

(1) Provide Files to CSME. This step presupposes that

the CSME is willing to take the time and is available to process the researcher’s

experiment.

The researcher makes the design point files available to the

CSME either by e-mail, portable storage device or shared network resource. E-

mail may be impractical as the files can be large and there may be tens or

hundreds of them. Likewise, a shared network resource may not be available.

(2) Create Cluster Simulation File(s). The researcher is

now out of the loop and has little control over when the simulation is run unless

there is a subordinate-superior relationship involved. The researcher will regain

control of the experiment when the results are returned to him or her.

30

The CSME’s job is fairly simple at this point. Each computer

cluster controller has a particular way of presenting it with a job for processing;

we will call it a submission file. The submission file varies slightly from controller

to controller, but is often a very simple text file with only a few lines. In general

the submission file contains the command line instruction(s) necessary to start

the simulation, and any variable information to add to the instruction set.

Variable information may include items such as the design point file name, how

many times to repeat the command line instruction to start the simulation, where

the simulation output should go, where to put error information, and where to log

information regarding the processing of the files.

(3) Start Cluster Run. In this step, the submission file

created previously is run either through a graphical user interface or by a

command line entry. Prior to starting the simulation the CSME needs only to

ensure that the design point files are available to the cluster.

If the submission file and design point files are appropriately

programmed, this step generates the raw data representing the results of all of

the researcher’s simulation runs.

(4) Return Results to Researcher. This step begins when

the simulation software has completed processing the design point files and

outputs the data into the designated files. If the design point files and submission

files were programmed correctly, then the results will be listed either sequentially

in one file or in a set of sequentially numbered files. In either case, the

researcher needs to be able to determine which results are from which design

point.

This step is also fairly simple. The CSME collects the result

file or files from the disk location where the cluster was told to output them. The

files are then transferred back to the researcher through one of the same

methods used to send the files to the CSME. The same problems of file size and

resource availability that hamper the Provide File to CSME step hamper this

step. The CSME motivation may also delay this step. The CSME is often a busy

researcher also. As a result, the CSME’s priority may not be to repeatedly check

31

the status of some other researcher’s simulation, nor to collect the files and

transmit them to the other researcher.

2. Analysis
a. Desktop Processing
It should be obvious from the discussion of the process that running

simulations on a desktop computer or even a set of computers is tedious at best

and enslaving at worst. The researcher is, for all intents, tied to the computer for

the duration of the process. While the simulation is running the researcher

probably does not wish to use the computer for other functions. Doing so would

conflict with the simulation experiment – any time spent on other process takes

away from the computer’s ability to rapidly produce simulation results.

Small, quick simulations with either batch scripts or some innate

replication ability and one-time simulations for model verification are still

reasonable on a desktop. Larger jobs should be completed in some sort of

automated fashion on a remote resource.

b. Cluster Processing
High-performance computing clusters are available for use in the

Department of Defense. Most of the knowledge required to utilize these tools is

specialized and clumped in a limited number of persons. As a result, many

simulations are run either serially on one computer or in parallel on a set of

handy computers such as a computer lab late at night. This method also

involves a great deal of tedium and can lead to errors. Typically, the researcher

uses a spreadsheet to keep track of which computer is processing which design

point as the results do not indicate the inputs other than possibly by file name.

The combination of learning how to program cluster submission

files and the commands to invoke the simulations from the command line can be

cumbersome to researcher, and in reality is usually of little interest to the

researcher or analyst. As a result the researcher may just ‘go with what he

knows’ rather than using new simulations or attempting to utilize a high-

performance computing cluster.

32

The few people that are most interested in the use of cluster

computing become the subject matter experts in its use. When other

researchers wish to process large jobs they need seek out the experts or send

them the files for processing. This introduces two extra steps in the critical path

between asking the research question and finding an answer. First, the expert

user must find the time to prepare the file for submission. Then he or she must

get around to sending the simulation results back to the interested party.

Rote steps that are unambiguous, though hard for the uninitiated to

remember, consume much of this process. There is a clear need for an

automated interface to ease the process of running a simulation and collecting

the results.

D. CONCLUSION
Converting the researcher’s DOE decisions into design points has been

made fairly trivial. Injecting those design points into the model for a simulation

run is not. Currently the work is done manually or by writing one-off programs

that comb through tens to hundreds of thousands of lines in text files to find the

dozen or so lines with the factors of interest. Once the lines are found the values

are changed to match a design point then the file is saved under a new name

and set aside for processing. The effort to update values in database driven

simulation is no less obtuse. Again, the researcher must comb through dozens

of often cryptically named tables to find the correct row and attribute value to

update.

This process is neither seamless nor of value to the researcher, other than

as a necessary step towards solving the research problem. The experimental

design is created in one application then transposed line by line into a design

point file for processing using a third application, the simulation. The multiple

recording and rerecording of data is error prone if done manually. When the size

of the task and the enormity of the questions at hand are taken into account,

mistakes are very likely and could have catastrophic results. The researcher is

spending far too much time completing data entry tasks rather than carefully

constructing models or analyzing simulation results.

33

The next chapter will develop a set of requirements for a proposed

system, which remedies the shortcomings of the current system as well as the

issues brought up in Chapter II. The activity diagrams that model the processes

described in this chapter will be modified and merged to support the

requirements development and system engineering process for an integrated

solution. Furthermore, a data model will be developed using the data elements

exposed in the models and discussion from this chapter.

34

THIS PAGE INTENTIONALLY LEFT BLANK

35

IV. SYSTEM REQUIREMENTS

The previous chapters describe the current state-of-the-art in DOE and

simulation processing automation, then map how the process of DOE, design

point file creation and simulation processing are typically completed. This

chapter defines the characteristics of a system to automate these processes from

the information gathered in the earlier chapters. First, the user requirements of

the automated system will be evaluated. Next, we will look at the system

requirements from the developer point of view. A new process model is then

created based on these requirements, the models from the previous chapter, and

stakeholder feedback. Finally, the data model for the system is developed.

A. USER ARCHITECTURE REQUIREMENTS
From the user’s point of view, there are three quality attributes of primary

importance to the system. They are Usability, Accessibility and Security.

1. Usability
According to The Free On-line Dictionary of Computing [2007] usability is:

The effectiveness, efficiency, and satisfaction with which
users can achieve tasks in a particular environment of a product.
High usability means a system is: easy to learn and remember;
efficient, visually pleasing and fun to use; and quick to recover from
errors.
While this thesis is not concerned with making a ‘fun to use’ system, it is

concerned with making a difficult process easier. If it accomplishes that, but

creates a system that is difficult to use, the Operations Research community is

no better off. Three aspects of usability that this research sees as essential are

training, error recover and system feedback.

a. Training
The user should be able to operate the system with little to no

system specific training. The system will not require any significant training to

operate. The system will be self explanatory, offer on-screen or linked

assistance to the user and use standard terminology throughout. The user will

not have to search for functions or information.

36

The user will not have to learn how a high-performance computing

cluster operates, just that a high-performance computing cluster can process

many of the user’s simulations at one time. High-performance computing clusters

go underutilized because researchers do not understand how to use them.

This system requirement assumes that the user is trained in DOE

as it pertains to simulations. It also assumes that the user understands the

standard terminology and designs for DOE.

b. Error Recovery
The user is warned when invalid data is entered. The system

checks data at the point of entry rather than waiting for errors to occur at run

time. Data entered by the user will be validated for data type (e.g., numeric,

date), size (e.g., password length), uniqueness (e.g., simulation name and

version) and presence (i.e., required fields). When a validation error is detected,

the user will be warned. Only the invalid data is removed from the form or field so

the user can correct it. The system will keep the valid data in the form so the

user does not have to retype it.

The user is unaffected by errors in associated system processes.

Errors in an associated process of the system, such as a simulation, will not

cause errors in another process, such as the user interface. Dependencies

between processes must be kept to what is essential in order to control data flow,

create user views and interface with the cluster controller.

c. System Feedback
The user can easily access valuable information from the system.

The system will provide feedback when it successfully uploads files from the

user, the user submits jobs to the cluster, the user creates a DOE, etc. The

system will provide status of the simulation job processing queue. The system

will alert the user when a job has completed (i.e., results are available).

2. Accessibility
Accessibility in this thesis is the availability of the system to the user in a

variety of environments. The system will be available to the user when and

where he or she needs it.

37

a. Remote Access
The user may access the system from any networked desktop

computing setting. The system will not require the user to leave his or her work

space to start a job, load files or retrieve results.

The user is able to start or stop simulation job processing and

retrieve results from any networked desktop setting.

b. User Platform
The user can access the system without installing software or

loading system plug-ins. Some settings within the Department of Defense make

it extremely difficult to add non-standard software. System administrators often

block new software for valid security and infrastructure concerns. They do not

know if the software contains malicious code or how the software may affect

other services within their area of concern.

The user can access the system from any modern operating

system as long as the operating system possesses standard networking

protocols. Simulations do not all work on the same operating systems so the

system must work on at least Microsoft and Unix based operating systems. This

will allow for widespread system adoption rather than pigeon-holing it into a small

subset of users.

3. Security
User personal data, simulation model data and system use will be

protected by the system. Simulations are used within the Department of Defense

to make important strategic tactical decisions. If the system is openly available

our adversaries can make assumptions on what our tactics might be from what

we are studying. Simulations are also used in decisions regarding the purchase

of billions of dollars worth of supplies and equipment every year. Advance views

of the types of problems we are studying and the types of equipment we are

simulating would give an unscrupulous manufacturer an unfair advantage in the

contracting process.

38

a. Authenticate Users
The user can not access the system without registering. The

system provides a user authentication scheme. The registration allows system

administrators to track usage and allow or deny access to the site based on the

user’s credentials. Use of the high-performance computing cluster must be

limited to qualified, validated persons.

b. Maintain Data Integrity
The user’s data will not be available to other users, unless the

owner requests it. The system must protect not only personal data, but also the

models that the user loads and the results of simulation run. The system will

provide collaborative abilities so a user can make his model’s DOEs and results

available to other users.

c. Protects user data and transactions
System use must be secure from unauthorized observation over

the network. The system will obfuscate data and transactional requests sent

over a network.

B. DEVELOPER ARCHITECTURE REQUIREMENTS
1. Modifiability
Administrators can quickly and cost-effectively alter data models, user

views and business rules. It is not anticipated that this system will have a full-

time developer or maintainer so there is a need for the code to be relatively

accessible. Applying changes to the system will also require a minimum of time

and effort.

2. Extensibility
One of the primary concerns with the software systems currently on the

market within this problem domain is that they work great on only one simulation

or with only specific designs. The system administrator will be able to extend the

abilities of the system post-deployment.

a. Adding Design Algorithms
Administrators can add new designs and make them available to

users within hours.

39

b. Adding Simulations
An administrator can make a new simulation available to the

system within hours (not including loading the simulation on the high-

performance computing cluster). The administrator must have some familiarity

with the cluster in order to understand what data it requires to run a job. This

function is restricted to administrators to maintain control over what is and is not

available on a cluster and to maintain system security.

3. Maintainability
The administrator or developer can make changes to the system

without creating a cascade in other portions of the system. A change in a

function’s interface will be the only change that affects other functions.

4. Portability
a. Server Operating System Dependency
The system’s server operating system will not be determined by

system requirements. Simulations and high-performance computing clusters run

from a variety of operating systems. As such, the system will run on a variety of

operating systems.

C. ACTIVITY DIAGRAM OF PROPOSED SYSTEM
A new activity model of the proposed application process flow was created

based on the conclusions drawn in Chapter III. The model was then revised

using input from members for the Simulation Experiments and Efficient Designs

(SEED) Center for Data Farming, staff from the TRADOC Analysis Center

Monterey, and Air Force Research Labs staff during presentations and

discussions from March 2007 through July 20007. The final products (Figures 3

and 4) are the result of that feedback.

This section will highlight the difference between the original model, from

Chapter III (Figures 1 and 2), and the final products below.

1. Design of Experiment Development
The two most prominent and important differences between the current

DOE process (Figure 1) and the proposed process are the presence of the

40

proposed system and the addition of two steps in the design point file creation

process (Figure 2 top half). The details of these changes as well as any others

are described below.

NOTE: the activity diagrams in Figures 3 and 4 have a non-standard

notation. Some object flows are labeled with ‘:data’ where ‘data’ is the attribute

parameter that is being assign or updated in the flow. This was done to clarify

the diagram.

a. Open Base Case File
This step was previously completed in the design point file creation

process. This does actually add work to the DOE process, but will save time

overall by combining steps and allowing the system to do work for the

researcher.

This step assumes that the researcher has a working model that is

verified to run on the simulation of choice for the experiment. This file is

transferred through a network to the proposed system. The system will display a

list of files that the researcher and his or her collaborators have uploaded. The

BaseCaseFiles object (rectangle with underlined text) and associated object flow

(dotted line) represents this action.

This step ends when the researcher selects the base case file that

he or she wishes to use. This selection is recorded in the system.

41

Figure 3. Proposed Design of Experiment Process

42

b. Find and Display Factors
This is the second step that was moved from the design point file

creation process to the DOE process. In the current process the user does this

by viewing the open text or database file. In the proposed system the work is

done by the system. The system will process the base case file locating all

possible factors. The system displays all factors to the user in a hierarchical tree

format. This format represents factors as elements that are made up of

attributes that describe the element and sub-elements, also called children, that

are components of the element. An element, such as a car for example, may

contain multiple attributes (e.g., color, number of doors) and possibly sub-

elements (e.g., engine, suspension) which may have attributes and sub-elements

of their own. Each element, child and attribute must be grouped with its parent in

order to provide the researcher context. As described in Chapter III, a model file

may contain tens to hundreds of thousands of factors. A flat, non-hierarchical,

listing of the factors provides a confusing picture to the researcher. Preferably,

the factors will be displayed in an expandable/collapsible list, like a Microsoft

Explorer file structure representation, so the researcher does not have to view all

of the children of elements that he or she knows contain no factors of interest.

This step ends when the factor and their relationships, derived from

the base case file, are displayed for the user on a computer screen.

c. Locate and Select Factors
This step combines ‘Select Factors’ from the current DOE process

(Figure 1) and ‘Locate Factor’ from the current design point file creation process

(Figure 2). It is the final step that has been reallocated from the design point file

creation process. As this step combines two steps from the prior process, it

carries with it many of the inherent difficulties in conceptually and physically

selecting the factors that were described in Chapter III. However, in combining

these steps, then recording the user selections in the system, we take some of

the cumbersomeness out of the process later on.

The researcher has selected the base case file and the system has

found and displayed all possible factors. The researcher is now asked to select

43

the factors of interest from the list of all factors. The coded location of the factor,

in the Extensible Markup Language (XML) or database schema, is recorded in a

Factor object for use in the next step.

d. Determine Factor Type; Define Range and Resolution;
Define Set

The system has now collected the factor selections made by the

researcher. The system clears the non-factors from the screen and displays the

researcher’s selections with the value and address from the base case file for

reference. The remainder of these steps proceeds as previously described in

Chapter III. The only difference here is that the decisions are made within the

proposed system and the system records the decisions (as represented by the

‘:type, :range’ object flow).

e. Select Factors in Design; Select Design Type; Select
Number of Replications and/ or Termination

The remaining steps are the same as in the current DOE process

except that they are completed in the proposed system. In Select Factors in

Design the system provides the researcher with a list of the factors that he or she

selected earlier in the process. In Select Design Type the system provides the

researcher with the designs that have been encoded in the system. After all

factors are allocated the system saves the factors and designs as a

DesignOfExperiment object. Finally, the researcher enters the number of

replications and/or the termination point for the simulation, which are also saved

to the DesignOfExperiment object.

During these steps the system will provide the user with the number

of design points that the completed DOE has. The product of the number of

design points, the number of replications and the researchers estimated

simulation run time (e.g., from a validation run) would yield an estimate of the

total time that the experiment will take to process. The researcher can use this

data to shape his DOE choices. Based on the time available and the estimated

processing time the researcher can determine the resolution that he or she wants

from the design. In a perfect world, with unlimited processing availability and

time, this would not be a factor, but we must be practical about the situation.

44

f. Conclusion
This section ends with a complete DOE. In terms of time, the

researcher is probably not ahead of where he or she would have been using the

current process. However, unlike the current process, the information created

during the proposed process is accumulated and will be directly applied during

the next process. Also, unlike the current process the design decisions have

been recorded and can be documented for retrospection and collaboration.

2. Design Point File Creation and Simulation Processing
The immediately identifiable difference between the current (Figure 2) and

proposed (Figure 4) diagrams is that the proposed system has taken on the

burden of the tedious work described in Chapter III.

This process starts with a DOE that was created in the previous process.

It assumes that a base case file has already been saved to the system and the

associated simulation software is loaded on the system.

a. Request Experiment Run
The researcher initiates the process by telling the system to run the

DOE that was created in the previous process. The system takes over from this

point until the results are generated. All other work prescribed for these steps in

the previous chapter is automated by the proposed system.

b. Create Design Point Values
In the current process, the researcher completes this step using

some external mechanism. The numbers are not used until we prepare to run

the experiment, so there is no reason for the system to store the actual values

until the researcher requests the experiment run.

45

Figure 4. Proposed Design Point File and Simulation Processing

46

The system combines the information from the DOE object and the

algorithm associated with the design to create the actual values for each design

point. The values are stored in the system for application during the next step.

c. Open Base Case File; Change Factor Value; Save as
DesignPointN

The proposed system opens a copy of the base case file that it

renames based on the current design point, just as the user might in the current

system. It then uses the factor address from the DOE to find the factors of

interest. The system replaces each factor value with the corresponding value

from the design point, created in the previous step. The system continues

through the design point until it replaces all values for all factors of interest. The

factor address may also allow the system to go directly to the factor of interest

rather than scanning through the file as a human would. This gives the system

another advantage, constant time access to factors, over a human processor

who would have linear time access.

This group of steps is well suited to a computer. The process

requires precision; a computer does not make mistakes unless programmed to.

The process is repetitive and tedious; a computer does not get tired, bleary-eyed

or get calls from its spouse about the kids misbehaving, distracting it from its

task. If the system does have a higher priority task, it is smart enough to save

exactly were it is, and then reload the information when this task is allocated

processor time again.

d. Create Cluster Submission File; Start Cluster Run
The choice between running on a desktop or on a cluster is not

available in the proposed system. A cluster controller can operate on a desktop,

set to queue jobs to run only when the system is idle, but our interest is in high-

performance computing clusters. The system will use the codified knowledge

from the Cluster Subject Matter Expert to create submission files based on the

requested simulation and the number of replications from the DOE file.

One additional consideration, especially for long-running

simulations, is the method that the system uses to order design point simulation

47

runs and replications. The first method runs all replications of a design point

prior to moving on to another design point. This is simpler and only requires one

cluster submission file. The second method starts each design point, prior to

replicating any design point. Once the system submits all design points, it begins

submitting the second replication of the DOE and so on. The advantage of this

method is that if a research sponsor cuts the available time and the researcher

needs to reduce the number of replications after they have started, he or she still

has some sets of results for the complete DOE. A complete set of replications

from only some of the design points is nearly useless. A complete set of design

points is necessary to gain an unbiased picture of the response surface. Again,

we see an advantage to using a computer for this process. Repeatedly making

and running very similar submission files is a task well suited for a computer.

The second method was chosen for the proposed system. It is

referred to as an anytime algorithm. An anytime algorithm can provide an

answer at any time, but given more processing time the answer gains precision.

These algorithms are important in Artificial Intelligence, but could be important to

Modeling and Simulation also.

e. Notify User That Results are Available; User Retrieves
Results

As results become available, the system will notify the user in order

to avoid the package-tracking syndrome. Because parcel services have package

tracking, people often compulsively check on the status several times a day,

even if the website claims in bold-large-font lettering to only update the status

once every twenty-four hours. To avoid this syndrome, the proposed system will

email the user when results are available.

Finally, the researcher accesses the system and retrieves the

results. The system should provide the results as archive files rather than

hundreds of individual files.

D. DATA MODEL OF PROPOSED SYSTEM
Based on the requirements of the proposed system and the information

requirements in the previous chapters, the data requirements were derived. An

48

Entity Relationship (ER) diagram shows the data grouped as entities and the

entities’ attributes. The remainder of this section provides an entity dictionary

that describes each entity, attribute, and entity relationship. Rather than an

alphabetical list, the dictionary lists the entity followed by its attributes then

relationships.

Conventions:

- In the database table name is the plural form of the entity name such
as users. An instance of the entity takes on the singular form, user.

- Each entity, except for base_case_files_users, has an
<entity_name>_id primary key. The database will automatically assign
this an integer value to uniquely identify each new entity instantiation
and increment the value.

- Primary or foreign key designations precede an attribute definition.
- The data type (e.g. string, integer) follows each attribute.
- Relationships are annotated with a colon and the name of the related

entity. For example, ‘:factors’ defines a relationship between the entity
being described and factors.

Entity: users - people who access the system including researchers and
administrators

 Attributes:
- first_name: the given name of the user; string
- last_name: the family name of the user; string
- email: the email address of the user; used to contact the user in

cases where the cluster throws error or to alert the user when
results are ready for download; string

- uid: the user selects a unique username; string
- hashed_password: the digested value of the user’s password

and the salt – a security measure; string
- salt: the randomly generated ‘seed’ that is combined with the

password prior to digesting the password; string
- user_type: defines the user’s level of privilege within the system,

e.g. user, administrator; string

49

Figure 5. Entity Relationship Diagram of Proposed System

Relationships:
- :base_case_files: a user optionally uploads many

base_case_files. A base case file must belong to a user
- :design_of_experiments: a user optionally creates

design_of_experiments; a design_of_experiment must be
owned by a user

50

- :results: a user optionally has many results through
designs_of_experiments that are run; a result must belong a
user

- :base_case_files_users: users are optionally assigned to many
base_case_files_users; this relationship allows user
collaboration through the sharing of base case files

Entity: design_of_experiments – theses entities are created by users to
describe the method in which the factors will be manipulated

 Attributes:
- design_name: required; assigned by the user to provide a

descriptive identity to the design; not necessarily unique; string
- created at: required; the system records this required attribute to

give the user a reference if he or she forgets the design_name;
date/time

- replications: the number of times the simulation will run at each
design point or the number of times it will run the base case file
if that is the only file that the researcher wants to run; positive
integer

- base_case_file_id: foreign key; required; identifies the file that
the design_of_experiment will manipulate; integer

- user_id: foreign key; required; identifies the user that created
this entity; integer

- simulation_id: foreign key; required; identifies the simulation that
the design point files that this design_of_experiments will be
applied to; integer

Relationships:
- :users: a design_of_experiment must be created by one user
- :results: when a simulation processes a design point file,

created by the design_of_experiment, the end product is one or
more results; a result must be created by a
design_of_experiment

- :simulations: a simulation must process the design point file that
the design_of_experiment creates

- :factors: a design_of_experiment optionally contains one or
more factors.

- :base_case_files: one, and only one, base_case_file must be
used in a design_of_experiment

Entity: base_case_files – users upload base_case_files that represent the
base model that they intend to process with simulation software

51

 Attributes:
- file_name: required; the name of the base_case_file that was

uploaded to the system; string
- path: required; the relative path of the file in the file system;

string
- comment: allows the user that uploads the base_case_file to

further identify the file or leave a note for a collaborator that
might be interested in the base_case_file; text

- created_at: required; auto assigned by the system; gives the
user a frame of reference in case he or she forgets the name of
the file they loaded; also allows administrators to identify old
base_case_files to cleanse the system if necessary; date/time

- file_size: required; auto assigned by the system from file system
information; provides the user with an idea of the disk size of the
model; float

- user_id: foreign_key; required; identifies the user that uploaded
the base_case_file; integer

Relationships:
- :users: a base_case_file must be uploaded by a user
- :design_of_experiments: a base_case_file can optionally be

used in one or more design_of_experiments
- :base_case_files_users: base_case_files are optionally

assigned to many base_case_files_users; this relationship
allows user collaboration through the sharing of base_case_files

Entity: results – a simulation creates results; each result file contains the
measures of interest that the researcher requested plus any simulation specific
data; in this model, design_of_experiments provide the linkage between results
and simulations

 Attributes:
- data_file: required; the file name that contains the simulation

results; string
- path: required; the relative path of the file in the file system;

string
- created_at: required; auto assigned by the system; lets the user

know how much they will be downloading; also allows
administrators to identify old results to cleanse the system if
necessary; date/time

- file_size: required; auto assigned by the system; lets the user
know how much they will be downloading; string

52

- user_id: foreign key; required; identifies the user that the results
belong to; integer

- design_of_experiment_id: foreign key; required; identifies the
design_of_experiment that created the results; integer

Relationships:
- :users: a result must belong to one and only one user
- :design_of_experiments: a result must be created by one and

only one design_of_experiment
Entity: base_case_files_users – this entity is an artifact of making

base_case_files available to multiple users for collaborations
 Attributes:

- user_id: primary key; required; identifies the user that is granted
access to a base_case_file that another user created; integer

- base_case_file_id: primary key; required; identifies a file that is
being made available to a user other than the user that created
it; integer

- permission: defines the privilege level that the user has over
the base_case_file; e.g. read, write; string

Relationships:
- :users: a base_case_files_user must be assigned one and only

one user
- :base_case_files: a base_case_files_user must be assigned

one and only one base_case_file
Entity: factors – simulation-element attributes that are of interest to the

researcher
 Attributes:

- path: required; the expression used to address the factor of
interest in the data structure that it resides in; examples include
SQL expressions for databases and XPaths for XML files; string

- data_type: required; identifies the class of data that the factor
represents such as integer, float, categorical; string

- range_low: required for numeric data that will be varied along a
range; represents the lowest value; float

- range_high: required for numeric data that will be varied along a
range; represents the highest value; float

- precision: for numeric data, other than integers, this represents
the number of digits to the left of the decimal point; integer

53

- set: for categorical and Boolean data; a comma separated set of
strings representing the possible values for this factor; string

- lockstep_id: required; default value is no; identifies if the factor
is to be changed as part of a group such as some characteristic
of a weapon that needs to change for a squad of soldiers;
Boolean

- design_id: integer; the design of experiment the will alter the
factor to create design point files; integer

- design_of_experiments_id: required; the design_of_experiment
that the factor belongs to; integer

Relationships:
- :designs: a factor must be altered by one and only one design,

or else it isn’t really a factor of interest
- :design_of_experiments: a factor must belong to one and only

one design_of_experiment
- :lockstep: a factor is optionally involved in one and only one

lockstep group
Entity: locksteps – identifies if the factor is to be changed as part of a

group, such as a characteristic of a weapon that needs to change for a squad of
soldiers

 Attributes:
- group: required; a system assigned group number; there may

be more than one group in a design_of_experiment; integer
- factor_id: required; the identifier of the factor in a lockstep group
Relationships:
- :factors: a lockstep belongs to one and only one factor

Entity: designs – a design contains the information necessary to alter a
group of factors in a way that is consistent with some logical algorithm in order to
achieve a statistically sound set of results to an experiment.

 Attributes:
- name: required; a unique identifier for the design; it should be a

recognized design such as NOLH or factorial; string
- version: an identifier for cases where the implementation of the

design changes due to updates, errors etc. but the basic design
remains; string

- comment: any additional information about the design, such as
what types of experiments it works well for; text

54

Relationships:
- :factors: a design is optionally involved in altering one or more

factors in any given design
Entity: simulations – software created to automate the processing of

system models
 Attributes:

- simulation_name: required; the name of the simulation software;
string

- executable: required; the command required to start the
simulation

- command_line_argument: any additional flags required when
running the simulation; string

- version: required; the release of the software; some simulations
are very specific about what they require in a simulation model
and are not backward compatible; string

- data_file_extension: required; the filename extension for files
that contain models for this simulation; this provides a first-line
validation of the data file; string

- comment: any additional information of interest to the
researcher or quirks of the simulation; text

- validation_schema_id: for XML files; a template that indicates
the required element and attributes in a data model; integer

Relationships:
- :design_of_experiments: a simulation may optionally be

involved in one or more design_of_experiments
Entity: validation_schema – a template that describes the required,

optional and allowed data elements in an XML file
 Attributes:

- file_name: required; the name of the file that will be test or
validate model files prior to simulation processing; string

- path: required; the file system address for the
validation_schema file; string

- comment: any additional information about the file that the
system administrator finds useful; text

Relationships:
- :simulation: a validation schema must be related to one or more

simulations

55

E. CONCLUSION
This chapter defined the attributes for the proposed system, mapped

process flow through the proposed system, derived data requirements and

modeled those requirements. The next chapter will discuss the development

process of making these requirements into a prototype system.

56

THIS PAGE INTENTIONALLY LEFT BLANK

57

V. DESIGN OF PROTOTYPE APPLICATION

The previous chapters described the current methods of Design of

Experiments (DOE) and simulation processing, then described an architectural

framework designed to improve these processes. The proposed system will

automate steps that are tedious and error prone and will provide functions to

apply the information input in the early steps of the process to where it is actually

used.

This chapter will describe the decisions made in instantiating the

architecture and developing the prototype. First, the choice of design

methodologies is described. Next, we describe the design decisions such as

choice of programming language and user interface component. Finally, the

tools used in development are detailed. This will lead to the final substantive

chapter, which will detail the development of the prototype system.

A. METHODOLOGY AND PATTERNS
1. Incremental Development

a. Justification
An incremental development allows the developer to plan delivery

of completed functionality frequently, gaining stakeholder feedback; it reduces

requirements risk and technology risks. Incremental development reduces

requirements risk by frequently gaining user feedback regarding the delivered

functions. This forces greater communication between the developer and

stakeholders, allowing the developer to fix problems or adjust future development

before the problems spread into other parts of the system. It reduces

technological risk by allowing the developer to attempt to implement new or

unproven technologies, serially or in parallel with other development, without

affecting the implementation of well-proven technologies.

There is no known implementation of a system that aids in DOE

and automates simulation execution so the requirements are not well known.

The system must use some method to tie together preexisting technologies, such

58

as cluster controllers and simulations. A relatively new scripting language, Ruby,

does this well in many instances. While Ruby’s first release was in 1995, it did

not begin to gain traction until around 2000 with the release of the first popular

English language tutorial [Thomas, 2000] and only gained widespread

acceptance with the release of the web-framework, Ruby on Rails, in 2004. The

immaturity of such a language means that many applications of the language

have not been implemented, resulting in high technology risk. As mentioned, an

incremental approach to design works well both of these situations.

Finally, the allotted time and development environment for this

thesis suggests the use of an incremental approach is appropriate.

Implementation of all functions mentioned in the previous chapters is unlikely

within the time frame allowed. Rather than describing a system that only

provides half of the functionality, this thesis plans for full functionality.

Incremental development provides convenient break points where fully

completed functions are delivered and the project is handed-off to a new

developer.

b. Planned Increments
The system functions, as detailed in Chapter IV, section A, B, C

and D, will be developed generally as follows: basic system framework; cluster

and simulation interface; basic DOE; efficient DOE. Specific function

implementation is below.

- remote access (basic user interface); upload files to server
- protect user transactions; authenticate users; maintain data

integrity (no sharing); system feedback (interface with the
cluster controller)

- adding simulations; request experiment run (base case file
only); create cluster submission file with replications; start
cluster run

- find and display factors; locate and select factors; change factor
values (no actual design application); save design point file; run
base case file and design point file

- notify user that results are available; user retrieves results

59

- adding design algorithms; change factor values and save design
point files after design is applied

- determine factor type; define range and resolution; apply design
to results; run simulation

- define set; select factors in design; select design type
2. Architectural Patterns
Architectural patterns are well-defined element and relationship sets that

confer a known set of quality attributes and constraints, which aid in defining a

system [Bass 2003]. They allow a developer to define in abstract terms the basic

foundation of a system without dealing with low-level implementation details. For

example, the developer of a file sharing system that needs the quality attribute of

availability may say he will use a peer-to-peer pattern to provide the quality

attribute prior to deciding on the actual protocols and procedure to implement

that pattern.

a. Model-View-Controller
The Model-View-Controller (MVC) pattern separates the system

data model, the user view of data and the control of the application. In this way, it

achieves elements of usability, modifiability and maintainability quality attributes.

The model, in the MVC pattern, maintains all of the data as well as

the state of the application. The model also enforces business rules as they

apply to the data. For example, if the model declares that the number of

replications in the DOE must be positive, the model ensures that a DOE object

never contains a negative number for replications. In this manner, it also

ensures that the database field for replications never has a negative number

value (see ORM below).

Maintaining one data model aids greatly in the achieving

maintainability quality attributes. In MVC, the developer must only look in one

place to find and alter business rules about the data and the data storage

schema. To ensure data integrity, a developer using some other pattern or

proceeding haphazardly must search through all of the application code to find

each function that might affect the data.

60

The view portion of the pattern is the representation of the model

data that the user sees. The user never interacts directly with the data, only a

view of the data. The application may display data in different ways for different

functions. For example, a web application may display a different view for

normal web browsers versus hand-held (e.g. mobile phone) browsers. The view

is essentially dumb. It does not know what it is displaying or control which view

is used, the controller does that. The view creates the display based on the data

passed by the model. For all it knows a string passed to it could be a phone

number or the works of Aristotle [Dempsey, 2003]. The view does provide a way

for the user to interact with the application (e.g. form buttons, hyperlinks), but

does not handle the function or request that the user makes.

The view portion of the triumvirate enables the developer to change

the user interface rapidly, without worrying about disrupting the data model and

causing a cascade of errors. This helps to achieve the modifiability and

maintainability quality attributes. This also enhances overall usability by

speeding up interface changes during the implementation and maintenance

phases of development.

The final leg is the controller. The controller coordinates the

application by acting as a bridge between the model and the view. It passes data

and user input to the model. It tells the view what data to input as user feedback

and selects the appropriate view based on the user instruction and user model.

When the model rejects some data input that the controller passes it, like a

negative number of replications that the user entered, the controller tells the view

to redisplay the form with an angry message informing the user that you cannot

replicate something negative times.

The model-view-controller pattern achieves several of the target

system’s quality attributes. It enables the attainment of maintenance and

modifiability quality attributes by helping the developer write functions and rules

61

only once. MVC enhances data integrity by keeping the data model separate

from the application control and keeping the view separate from data

manipulation.

b. Client-Server
Applying the client-server pattern achieves accessibility and

security quality attributes. The client-server pattern can be seen as a two-tiered

system with one system sending a request for a service and another system

providing an appropriate response to the request.

In the case of the DOE system under development, the clients are

remotely located from the server system. The users, on the client systems, will

request views of the data model, which the server will provide as long as the

parameters are within the defined controller logic.

B. IMPLEMENTATION DECISIONS
 This section explains considerations in implementation of the architectural

patterns described above to provide the quality attributes mentioned. Chapter IV

will describe specific issues with instantiating these decisions.

1. User Interface
A web-based interface will provide remote access to the system. This

provides open access to all networked computers that have a standard web

browser. Development of the system with W3C compliant HTML rather than

relying on proprietary plug-ins will ensure that the system is usable on all

standard browsers.

A web-based system provides easy access, but brings security concerns.

The private network at the Naval Postgraduate School is the initial target for

deployment; however, broader implementation may include public network use.

A transport layer security implementation, which encrypts client-server

communications, will protect user data and user transactions from eavesdropping

and tampering over both the private Naval Postgraduate School network and any

future deployment on a public network.

62

A web-based system will also decrease new user training time by

providing the user with a familiar interface. Web forms including drop down

boxes and file upload dialogues are ubiquitous, and should be familiar to all

users of the system.

A web-based system also enhances system modifiability. A client-server

system, which depends on the installation of a standalone application for a client

is prone to becoming outdated. In a web-based system the model, user view and

controller logic reside on the server so the users always access the most up-to-

date version of the application.

2. Language
As mentioned earlier, Ruby, an interpreted dynamic programming

language, provides great utility for tying together various software elements.

Ruby is open source with a liberal General Public License (GPL) so developers

can use it freely, within scope. Ruby is also portable, one of our quality attributes,

so it runs the same code on Unix, Windows, and any of over a dozen other

operating systems. This means that implementing the system in a new

environment does not require a developer to rewrite the code to work on that

operating system. On the downside, interpreted languages are generally slower

than compiled languages. If an organization wishes to deploy the system or

release it for deployment in multiple locations, the developer should analyze any

complex function for optimization or implementation in a compiled language if

language speed turns out to be a bottleneck. However, given the relative speed

of CPUs compared to network bandwidth, many web developers have reported

that using interpreted scripting languages such as Perl or Ruby has a negligible

effect on system performance.

The prototype system will use the Ruby on Rails web application

framework. Ruby on Rails, or Rails, provides for easy development within the

model-view-controller design pattern. Rails also allows rapid application

development and testing. It is written in Ruby, which is not compiled, so no time

is wasted waiting for the classes to compile after a small change is made. While

you must restart most web servers to reflect any application changes, Rails’ built-

63

in web server, WEBrick, applies changes to the application on the fly. WEBrick

does this by reloading the classes each time a user requests a page. This does

make it is slow, but is very useful during development. The actual prototype

deployment will use a different web server (see below) so the lack of speed does

not detract from application utility.

Rails allows us to meet several of our quality attributes. Rails provides for

modifiability, maintainability and usability quality attributes through its ease of use

and developer tools such as form validation. Rails handles many low level details

that other web frameworks do not. For example, configuring Rails to work with

most any database only requires the installation of a RubyGem, which takes one

entry in the operating system’s command line environment.

Rails provides Object-Relational Mapping (ORM) through its Active

Record class. ORM maps scalar data from a relational database to objects (i.e.

object oriented programming objects). A database can store volumes of data,

but not objects. In addition to data, objects can hold state and have behaviors

associated with them. They can also implement inheritance from parent classes.

Unfortunately, we cannot just work with objects in the server’s primary memory

(RAM). The data available to most web applications exceeds RAM for most

servers, so databases are handy in this regard. Active Record handles all of the

mapping tasks. Tables are mapped to classes; rows to objects. Active Record’s

automated mapping takes care of this detail, which the developer using many

other frameworks would have to handle on their own.

Rails’ tight ORM integration and database adapters, which hide the details

of application-database communications, provides for easy database migrations

and easy data manipulation. A database migration changes the database

schema and can also insert data into the database. Rather than learning

different commands for each database brand, Rails provides one programming

interface, then handles the actual database manipulation for the programmer.

Therefore, if the database software available to the organization changes in the

64

middle of development, web development does not have to restart from scratch

with coding the new data manipulation commands.

Using Rails makes application usability easier to achieve also. For

example, Rails includes form validation helper methods. Within the model

classes, the developer can implement these powerful methods with one line of

code. If we need to ensure that the user enters a number in the ‘Replications’

field, we need only enter the following in the design_of_experiments model:

validates_numericality_of :replications

Now, because of this code and because Rails uses the MVC framework,

on any page where a user enters replications Rails will check to see if the entry is

a number prior to saving the value. If the validation fails Rails redisplays the

page retaining all the values that the user previously entered plus a message at

the top of the page telling the user of his or her erroneous entry. To override the

default message, the developer adds an option:

 validates_numericality_of :replications

 :message => “Must be a number.”

To validate multiple fields in a form with the same method the developer

need only list them out with a comma between each:

validates_presence_of :first_name, :last_name

These snippets illustrate the ease of implementing helpful methods within

the Rails web application framework. They should also show how this would

enable the developer to rapidly create and rework a program within this

framework.

3. Servers
A web-based application creates Hypertext Markup Language (HTML)

documents on the fly (i.e., dynamically) by combining templates and information

from a database based on the user request. Ruby on Rails provides this

function, but it does not handle the receipt of data requests and sending of the

dynamically generated HTML document back to the user. A web server does.

Two applications will serve web documents for the prototype system. Mongrel is

65

a fast, easy to set up, stable web server, but is single threaded, which means

that it could not handle multiple requests simultaneously (i.e. only a couple users

at a time). This is overcome using lighttpd, which does not handle dynamic web

pages as well as Mongrel, but can serve up static content much faster and, more

importantly, can balance requests between multiple servers.

To take advantage of these capabilities, multiple Mongrel servers run

behind a lighttpd server. Lighttpd is the only portion of the set up that faces the

internet. As lighttpd receives requests from the internet, it ‘decides’ which

Mongrel server it should hand off the request to. The decision is configurable in

a number of ways, but inconsequential here. The Mongrel server then retrieves

the content and passes it back to the lighttpd server that sends it along to the

requester.

4. Computing Cluster and Cluster Controller
Implementing the cluster is beyond the scope of this thesis, but the

constraints that the prototype was built under should be documented. The high-

performance computing cluster (HPC) that this research sought to increase

utilization of was transferred from the Maui High Performance Computing Center

(MHPCC) in Hawaii. The cluster consists of 12 desktop computers with dual Intel

processors and 2 MB of RAM running Windows XP. It provides an overall

processing performance of over 20Tflop/s.

A cluster controller is a software application that manages and exploits the

available processors as effectively as possible. This software accepts job

submissions, queues them to run, prioritizes resource allocation, monitors the

jobs’ status, provides feedback, then informs the user upon completion [Condor

2007]. One of the research sponsors for this thesis selected the Condor High

Throughput Computing software for the cluster controller and was using it prior to

the start of this research.

5. Database
As mentioned in the Language section above, the database that Rails

interfaces with is of little consequence as long as it belongs to the group of a

dozen or so that Rails has adapters for. MySQL [MySQL, 2007] is an open

66

source General Public License (GPL) relational database management system in

common use in the U.S. and abroad. MySQL was selected as a matter of

convenience and cost. It provides all the basic functions of a database and

because it is widely used, there are many user forums in case of problems. The

GPL license means that there was no cost to implement the database for

research purposes.

C. DEVELOPMENT TOOLS
The development tools are described mainly because they can have some

impact on the resulting application and code. For example, an application

developed in Sun’s Netbeans [2007] integrated development environment (IDE)

uses Swing class object for graphical user interfaces (GUI), while the Eclipse IDE

[2006] uses the SWT package. This difference can result in incompatibilities.

The development environments used for this project are detailed below.

Neither environment is meant to portray the minimum system requirements for

the prototype. Rather, the environment information provides the reader a context

in which to recognize any system specific technicalities in the following chapters.

1. Eclipse, Subclipse
An integrated development environment (IDE) is a software tool that aids

in developing other software. There is normally a graphic user interface to give

the user access to common tools (by mouse click or keyboard shortcut) and a file

browser so the developer can easily access all of the files in an application.

Some common tools are debuggers, to find program errors, and integrated

compilers to turn human readable code into machine or byte code. IDEs also

contextually highlight reserved words and variables and can automatically format

code so it is easier to read.

Ruby on Rails’ basic file structure contains thirteen top-level folders plus

several sub-folders. Each time a developer adds a model Rails adds six files

(i.e., the model, view, controller, and test files for each), so moving back and forth

throughout the file structure would be distracting from a file navigation window

and difficult from the command prompt. The IDE handled these issues

transparently.

67

The Eclipse Platform [Eclipse, 2006] was selected to aid in development

during this research. Eclipse, originally developed for Java programming, is a

framework in which developers can easily design plug-ins to aid in the

development of any programming language.

To aid in Ruby development, an open source plug-in named Ruby

Development Tools (RDT) was added to Eclipse. RadRails [RadRails, 2006]

provided Rails development functionality such as running migrations and starting

the web server from within the Eclipse platform.

In order to preserve the revision history, back-up code, and make it

available from multiple locations, a versioning tool was used. A Subversion

repository was available for this function. An additional plug-in, Subclipse

[Subclipse, 2007], provided a Subversion interface from within Eclipse.

2. Development Platform
Initially development took place on a Dell notebook computer, but due to a

hardware failure the development was switched to an Apple Powerbook G4.

Because all of the code was backed up with Subversion, and since Ruby and

Rails are not operating system specific, the transfer was seamless. The author

chose Ruby because of its portability and the value of this choice was

inadvertently demonstrated by the hardware failure.

Later in the development, the Dell was fixed. Subclipse synchronized the

codebase on the Dell with that on the Mac. A database migration was then run

from Eclipse to bring the database schema up to date. After the database

migration, the remaining system components were started and the system

perfectly mirrored the system running on the Mac.

System specifics:

Dell Inspiron E1505 with a Intel T2400 Core Duo CPU running at 1.83

GHz and addressing 1 GB RAM. The operating system was Microsoft Windows

XP Media Center Edition, Service Pack 2

68

Apple Mac PowerBook G4 with a Power PC G4 processor running at 1.5

GHz with 512 MB of RAM. The Mac operating system was Mac OSX Version

10.4.10.

69

VI. PROTOTYPE IMPLEMETATION

A. INCREMENT ONE (SYSTEM BACKBONE)
The goal of the first development increment was to provide a base upon

which the rest of the system would be built and to provide some simple

functionality to test the base. To accomplish this goal the web server and

database were installed and configured, then a skeleton website was created

with a function to upload files.

1. Remote Access
A web server enables remote access to a web based application as

described in Chapter V. Lighttpd, commonly referred to as ‘lighty’, and Mongrel

web servers were installed with lighttpd facing the user and backing to a cluster

of four Mongrel web servers that would serve up the dynamic web content. The

installation was performed according to the instructions on the Mongrel website

[Mongrel 2007] and was uneventful.

Ruby on Rails was already installed on the development platform so the

author created a new Rails project named ‘RESIDE’ for REmote SImulation and

Design of Experiment. A model file representing users was programmed, and

then a scaffolding for viewing the users model in the website was created.

RESIDE was opened in a web browser and it displayed properly. A test user

was successfully added.

Once the application was running, the server load testing could

commence. Httperf [Mossberger & Jin, 1998], a tool that measures web server

performance by generating HTTP workloads and providing reply status as output,

was used to bombard the servers with various amounts of ‘traffic.’ Httperf ‘hit’

the server with up to ten consecutive connections for three thousand total

connections resulting in three-thousand replies with about five replies per

second. All replies were 2xx replies, which means a connection to the website

was made. 3xx series replies indicate a redirection and 4xx (e.g. 401) are errors.

All test results were saved to a log file. Overall, the setup worked well.

70

2. Upload Files to Server
This increment proceeded with the creation of the base_case_files model

to represent files uploaded by users. While Rails does inherently allow for

uploading files it loads them into the database. This method results in a

degradation overall application performance [Attkinson, 2001] so a plug-in was

found to work around the problem. The plug-in, Acts As Attachment, provides a

configurable way to upload files from a system user and save them in the file

system. The plug-in developer created Acts As Attachment to upload picture

files, so a few of the default setting needed to be changed when the plug-in was

implemented. The maximum file size, which was one megabyte, was increased

to ten megabytes to accommodate large simulation models. Acts As Attachment

also required a slightly different database schema for the target model to work

correctly. The ‘file_name’ attribute from the base_case_files table had to be

changed to ‘filename’, and three attributes were added. The system does not

use the new attributes, content_type, parent_id and thumbnail, so they remain as

artifacts of the plug-in.

After model creation and configuration, a scaffold view was built to test the

upload function. Uploading worked well so another view was created to display

the record with a link to download the file. Downloading the file worked.

An overall website design was created. The design gave the user the

ability to view all of his or her relevant information in one page (Figure 6).

The left side of the page provides navigation links. An optional user

feedback section displays at the top of the main section. This section displays

messages such as “You are not authorized to view that page.” or “File

successfully added.” The message section, a flash message in Rails parlance,

does not show up if there is no current message.

71

Figure 6. Main Application Page

The next section lists any files that the user uploads to the system. A file

is not visible to any user other than the one who uploaded the file (i.e. the

owner). However, the owner can share the file with others1. This section has

buttons to add a new file, delete a file or create a Design of Experiment (DOE)

with the file. If a DOE contains a file from this section, then the user cannot

delete the file. The system displays a message indicating the user must first

delete the file before deleting the DOE.

B. INCREMENT TWO (SECURITY AND CLUSTER INTEGRATION)
Security was added to the system and the cluster-controller was

integrated into the system prior to adding additional DOE or simulation run

1 Not implemented yet.

72

functions. The security at this level will encrypt the user’s passwords, the files

that they upload or download, and the DOEs that they make. The cluster

controller will then be added and will inform the system user as to the current

activity on the cluster.

1. Protect User Transactions
As mentioned earlier, encryption will hide user data transactions including

authentication. Accomplish this was straightforward. First, a server certificate

was created. In the development environment, a ‘self-signed’ certificate was

used. In deployment, the system administrator should have a ‘trusted source’

sign the certificate. Next a second lighttpd configuration file, lightypd_ssl.conf

was created to handle https: requests. The new configuration file includes the

certificate location, so order of evaluation matters. Finally, one line is added to

the application control file. All views in RESIDE were made to require secure

communications, but changing this for some views only requires a small

modification to the code. If a user enters an http: URL prefix rather than an https

prefix, Rails automatically redirects the communication to https.

2. Authenticate Users
User authorization requires the implementation of filters within the

controller objects. A filter is a function that can be set to run before, after, or

before and after a given set of code executes. In this case, a ‘before filter’

checks to see if the user has authenticated prior to accessing a restricted portion

of the application. To authorize, the user enters his or her user name and

password. If a user does try to get to a restricted portion of the website without

signing in, the filter catches it and redirects the user to the login page. The

system remembers the original page request and sends the user to that page if

he or she can supply a valid username/password pair.

After the authentication filters and functions were complete, a function was

implemented to grant privileges within the system. For example, a system

administrator should be able to add new simulations, while a casual user should

not. The system of filters provides these constraints. They check the user’s

user_type attribute and display the requested information is the user is an

73

administrator. If the user is not privileged, the system returns the user to where

he or she came from with a message added to the top of the screen indicating

that the user does not have proper privilege to access that page.

Figure 7. User Denied Access to Add Simulations

3. Cluster Integration and System Feedback
The Condor cluster controller provides the user feedback on the status of

the high-performance computing cluster (HPC) when ordered to in the command

line environment. It provides information such as number of jobs, how long those

jobs have run and the job’s creator.

Because RESIDE system users will not have command line environment

access to the system and because the purpose of this research was to abstract

such specialized knowledge requirements away from the user, this function was

added to the web based system. The bottom of Figure 6 shows the results. A

button to remove a job from the queue was added later in development. This

function currently relies on user benevolence as it allows the user to kill both his

or her jobs as well as other’s jobs, since all jobs are owned by the condor system

and all users need access to the system run-control functionality.

C. INCREMENT THREE (SIMULATION INTEGRATION)
This increment added the first target function to the system, running a

simulation on a remotely located HPC. To accomplish this, a function to add

74

simulations to the system was created. Then, the system was programmed to

create the submission file, which the cluster controller would use to run the

simulation with the indicated base case file.

1. Adding Simulations
This task proceeded with no significant issues. A new model was added

to the system and the corresponding controller and view files were programmed.

As mentioned earlier, adding a simulation is a privileged function so a “before”

filter provided authorization to these functions. The view creates a basic web

form. If the model validation function finds no problems, then the user sees a

screen like Figure 8.

Figure 8. Simulation Creation Feedback

Of note, Rails offers a ‘layout’ function that performs like a template for

system views. Figure 8 is cropped, but if it were not, it would show the same

layout as Figure 6. The main section of the screen contains the simulation form,

the remainder is the same. This was done by creating the ‘common’ layout in the

layouts folder then programming the Simulation Controller object with the “layout

75

‘common’” command. The common layout then renders everything up to where

the developer tells it to yield to view specific information.

2. Request Experiment Run
To achieve the remote simulation run function and stay within the system

framework the user must first create a DOE. The DOE, at this stage, only allows

the user to select the desired number of replications for the simulation

As Figure 6 shows, there are two methods to create a DOE. The user can

select a button next to the base case file or can select the “New Design of

Experiment” button within the Design of Experiments section. If the user selects

the button next to the file, the system will fill in the “Base Case File” field of the

New Design of Experiment form. Otherwise, the system provides a drop down

box that the users use to select the base case file. To proceed, the user enters a

design name of his or her choosing and the number of simulation replications.

Finally, the user selects the simulation software that will process the model from

the bottom drop-down box (Figure 9).

Currently the system displays all available simulations in the drop-down

box. Future development should display only simulation packages that are

compatible with the type of Base Case File, as indicated by its filename

extension (e.g., ‘.isf’ in the figure).

Now that a user can create a DOE, the function to create the cluster

submission is added. The system is first programmed with a generic template

that satisfies the requirements of the cluster controller. The system then inserts

the values that it derives from the DOE such as the number replications and base

case file. The DOE also specifies the simulation to use. The simulation object

data are then used to populate the submission file with variables such as the

location of the executable simulation program.

76

Figure 9. New Design of Experiment with Base Case File Pre-Selected

This increment concludes with the addition of a system function to start

the cluster run. The system was programmed with the command to submit the

file that was just created to the Condor controller, then put Condor’s reply, “N

job(s) submitted to cluster #X.” in the flash message portion of the user screen.

D. INCREMENT FOUR (START TRUE DESIGN OF EXPERIMENT)
The final increment that this thesis recounts will allow the user to select a

base case file for a DOE then find and display the factors in that file. After the

system displays the factors, the user should be able to select the factors that he

or she wants to include in the DOE and the system should record those

selections, alter the numeric factors according to the selected DOE factor

mapping, then run a simulation with both the original base case file and one with

the factors altered.

77

1. Find and Display Factors
This concept was the biggest technological hurdle in the research. The

system needed to open a data file, find all the factors within that file and display

them for the user in some meaningful way. In most cases, the data that

represents a simulation model is either in a database file or in an Extensible

Markup Language (XML) file.

The approach to parsing these files is similar, but the actual

implementation is very different. In both files types, the top-level structures are

first exposed, then recursively broken down until the program decomposes the

data down to its atomic components. In databases, the top-level structures are

exposed by examining the data dictionaries, which list the tables. Inspection of

each table provides the attribute names that describe the row values. Finally, the

program fetches each row value and recomposes the data for the user. The

actual display of the data is discussed below. The difficulty with database files is

that each implementation requires different adapters and slightly different coding

to decompose. While it is more of a caution for the system user than a

development issue, another danger with relational databases is that they often

have integer “key” values that point to records in other tables. If the references

are mistaken for factors and the values are altered in the DOE, the simulation

results will be useless.

A root node or element is an XML file’s top-level structure in XPath, the

language for finding information in an XML document. Every element in an XML

file can have a value, a child node, one or more attributes, or all three2. Every

child node in an element is itself an element, so it can have children, attributes

and values also. Decomposing an XML document requires that, for each

element, the program list the element value, then all attribute names and values,

then the program must parse each child in kind. Every XML file may have a

2 There are actually seven element node types in XPath, but the others are unimportant to
this discussion.

78

different structure, based on the number and types of attributes and child

elements, but every XML file is text3 so the programmer can handle each in the

same fashion.

The development goal for this thesis was to create a proof of concept

system, so only one type of model file, XML, was parsed.

As discussed in earlier chapters each model may have thousands of data

values. The proper display of the values is a major usability issue for this

system. The first part of the issue is what to show the user, the second part is

how to show it.

The question of what to show the user revolves around the balance

between being flexible and being usable. To provide the most flexibility the

system will display every node to the user. Within these nodes, there will be

great deal of chaff to sift through to find the wheat, but the wheat will be there. To

provide the most usability an expert user can prescreen the data file schemas for

each simulation to find the node types that have farmable4 factors. At run-time

the system will only display the selected factors to the user. The problem with

method is that the wheat might not be there when a researcher with a different

point of view tries to design an experiment. As discussed in Chapter II this was

the case with the Tiller.

The question of how to show the data in a usable fashion is easy to

answer, but was difficult to execute. The data are naturally nested, either in

tables and rows in a database or in nodes and child nodes in XML, so an

expandable/collapsible list, much like a folder and file listing in Microsoft

Explorer, was selected as a means to provide more manageable factor display

for the user. With some knowledge of the model the user should be able to skip

over hundreds or thousands of lines of potential factors by not expanding a node

where he or she knows there is nothing of interest. For example, if the

3 There are binary XML representations, but they are not in common use within the Modeling
and Simulation domain.

4 Large scale exploratory DOE has come to be known as “data farming”, and farmable
factors are ones which are suitable for exploration in this context.

79

experiment deals only with evaluating blue force equipment packages, the nodes

that represent the red and green forces can be left collapsed, saving the

researcher time.

A JavaScript package, aqtree2 [Aqtree2, 2002], and its associated

cascading style sheet file provides the ability to render expandable/collapsible

lists without installing any plug-ins on the remote user’s browser. Almost no DoD

command allows users to install plug-ins due to security concerns, but JavaScript

is still active on most browsers so aqtree2 is a viable alternative. The aqtree2

script makes the user’s browser render well-formed unordered Hypertext Markup

Language (HTML) lists as expandable/collapsible lists.

Figure 10 shows two states of the same web page, one collapsed to the

top level, on the left, and one partially expanded. Prior to transformation and

rendering, the source data file was ten thousand five hundred lines long, but it is

displayed here in a dozen or so lines.

The function that transforms the XML files ‘hides’ the file location address

for each factor in the HTML. As the user works through the model, selecting

factors of interest the ‘-’s turn to ‘+’s as with ‘Squad Active’ and ‘NumAgents’ in

the figure. When factor selection is complete, the user submits the form and the

system records each selection and the selection’s address in the Factors table.

E. CONCLUSION
The effect of rendering the expandable/collapsible list was difficult for the

author to achieve. It eventually broke the development timeline and ended the

current research effort. The code to process an XML file into a list has three

remaining issues. These are HTML file optimization, transformation processing

speed, and rendering speed.

A snippet of JavaScript is embedded in every line to turn the ‘-‘ to a “+”

and vice versa. This adds several thousand lines of HTML to the resultant file.

Embedding the code in the header once should fix this issue.

80

Figure 10. Expandable/ Collapsible List

81

The second issue is transformation time. Transforming a one-hundred-

line file takes a few seconds. A ten-thousand-line file takes a few minutes. A six-

megabyte file took about seven hours to process from XML to HTML. Using a

compiled language to do the transformation may help the speed dramatically.

Optimistically transforming the files would also decrease user wait time. That is,

as soon as a user uploads a file, the system should start processing the

transformation. This may waste some processor time, but user time is more

important.

The last issue is the time it takes the browser to render the expandable/

collapsible list once the list loads. The browser, with the JavaScript helper, must

examine the structure of the list to find which elements are parents, and which

children belong to which parent. Because the data model is extensive and can

run many layers deep, it requires a great deal of processing power and memory.

The file in Figure 10 loaded into the browser in just a few seconds; however, it

took about four minutes to collapse, during which time a user cannot do anything.

The two most likely resolutions here are to not do the expand/collapse bit, or to

just leave it as is. In the first method, the user will have to comb through the

factors, but only one time per DOE rather than one time for each design point. In

the second method we notify the user that the operation is going to take some

time, and tell him that he should get a soda, check his notes, and then come

back to make the selections. In either case, the user is still ahead, if we can

apply the algorithmic design to the resultant factor selections.

82

THIS PAGE INTENTIONALLY LEFT BLANK

83

VII. CONCLUSIONS AND FUTURE RESEARCH

A. SUMMARY
This thesis described the need for a reusable architecture for automated

Design of Experiments (DOE), design point file creation, and for running

simulations on a remote high-performance computer cluster. Then it detailed the

important quality attributes of that architecture. An activity diagram of the

proposed system aided in extracting the specific functional requirements for the

architecture. Next, the research derived the data requirements from the quality

attributes and the functional requirements flow. After detailing all of the

requirements, the thesis described and justified the selection of specific

components necessary to implement the architecture in a prototype system.

Finally, the thesis described the implementation of the architecture in a prototype.

B. CONCLUSIONS
The trend in Modeling and Simulation software both in the military and

civilian domains is toward tighter overall coupling of functions, such as

simulation software that includes drag and drop model development or modeling

software that includes some DOE function. This trend is distressing.

Organizations will end up purchasing or developing the same function, such as

model building, repeatedly for each simulation software package that they

purchase.

 Although the focus of this research was the design and implementation of

a system to complete DOEs and run experiments on remote high-performance

computing clusters, its most important finding is that tools can be developed that

will work with a variety of simulation systems as long as those systems provide

open interfaces and act in a standard manner.

In order to curb the trends mentioned above and to create reusable tools

the Defense Modeling and Simulation Office (DMSO) was recently renamed the

Modeling and Simulation Coordination Office (M&S CO) [MSAIC, 2007]. The

intent behind the move is to signal the change from stovepipe modeling and

84

simulation efforts segregated by commands or systems to a more integrated

approach in which reuse of simulations, tools, and services across functional

domains is common. This is a bold move forward, however DMSO was intended

to reach similar goals both when they were initially constituted and when they

were ‘redirected’ by the Modeling and Simulation Master Plan in 1995

[DODD5000.50-P, 1995].

C. FUTURE RESEARCH
Several more increments in the prototype development still remain. Each

increment is challenging and provides a ripe area for research. In addition to

moving forward, two system functions require optimization to make the system

more usable. They are the speed of creation of the expandable/collapsible lists of

from base case files, and the speed at which a browser displays the lists. To

increase the speed of list creation, the researcher may wish to implement the

function in a compiled language or the much faster - but less functional and just

as poorly documented - Libxml-Ruby [Libxml, 2006], the Ruby language binding

of the GNOME Libxml2 library which is programmed in C.

To improve display speed the future researcher may find an

Asynchronous Java Script and Extensible Markup Language (AJAX) method

such as Live Tree [Live Tree] useful. Live Tree loads only the requested parts of

the list. Initially it only loads the top level elements. When a user expands an

element with a mouse click, only the next lower level elements load. This

‘pessimistic’ loading extracts a small toll on each click, but does not make the

user wait for the whole list to load and then for the browser to parse and display

it.

After the final working prototype or first releasable version of the software

is complete, a business process reengineering study should analyze the impact

of the software, if any, on analyst’s productivity.

85

This thesis discussed simulation model file parsing in the abstract, then

only implemented support for Extensible Markup Language (XML) models.

Future research should include implementing database file support into the

system.

Similarly, this thesis described implementation on a high-performance

computing cluster (HPC) in the abstract, but the prototype works only with the

Condor cluster controller. Altering the code to work with a different cluster

controller should be trivial based on the architecture, but has potential to be

highly profitable for other organizations including the Modeling, Virtual

Environments, and Simulation (MOVES) Institute at the Naval Postgraduate

School. Taking this a step further, research could focus on allowing access to

HPC’s at any cooperative organization, such as any one of the former Project

Albert partners, that would adopt this architecture. One intriguing possibility is

that the Condor controller can distribute workloads over a very broad and loosely

affiliated network. Cooperating organizations could use this to greatly enhance

their computing power by having a cross-facility sharing arrangement.

Participants in a SEED Center seminar strongly advocated adding an

expert system to help the researcher select the most appropriate design. The

expert system would take into account the factors that the researcher selected,

the factor types, the level of response surface complexity the researcher requires

and available time, and then provide the researcher with a recommended design.

86

THIS PAGE INTENTIONALLY LEFT BLANK

87

LIST OF REFERENCES

Acts as Attachment [Computer Software]. Rick Olson Retrieved June 12, 2007

from http://weblog.techno-weenie.net/articles/acts_as_attachment

Aptana RadRails Version 0.7.2 [Computer Software]. Open Source, Retrieved

May 13th 2007 from http://www.aptana.com/

Aqtree Version 2 [Computer Software]. Open Source, Retrieved June 7th 2007

from http://www.kryogenix.org/code/browser/aqtree2/

Atkinson, L. (2001, October 3). Storing files in a relational database. Retrieved

June 5, 2007, from http://www.zend.com/zend/trick/tricks-sept-2001.php

Bass, Len, Paul Clements, and Rick Kazman. Software Architecture in Practice.

2nd ed. Boston: Addison-Wesley, 2003.

Chwif, L.; Barretto, M.R.P.; Paul, R.J., (2000). On Simulation Model Complexity

[Electronic version]. Winter Simulation Conference Proceeding, 1(1), 255-

449.

Cioppa, T. M. (2002). Efficient Nearly Orthogonal and Space-Filling Experimental

Designs for High-Dimensional Complex Models. Ft. Belvoir: Defense

Technical Information Center. http://handle.dtic.mil/100.2/ADA406957

Crystal Ball for Microsoft Excel Version 2000 [Computer Software], Thousand

Oaks, CA: EMAGENIT.

Defense Modeling and Simulation Coordination Office. (2007). Modeling and

Simulation Analysis Center Journal, 2-3. Retrieved September 12, 2007,

from http://www.dod-

msiac.org/pdfs/newsletter/msiacnewsletter_06_2007.pdf

Dempsey, James. MVC Song. World Wide Developers Conference, 2003.

Retrieved September 12th 2007 from

http://cakephp.org/ModelViewController.mp3

Department of Defense. Under Secretary of Defense for Acquisition and

Technology (1995) Directive 5000.59-P, Modeling and Simulation (M&S)

Master Plan.

88

Eclipse Version 3.2.0 [Computer Software]. Portland OR: Eclipse Foundation,

Inc.

JMP Version 7 [Computer Software]. Cary, NC: SAS Institute Inc.

Kennard, R. W. & Stone, L.A. (1969). Computer Aided Desing of Experiments.

Tecnometrics, 11(1), 137-148.

Kleijnen, J. P. (2003). A user's guide to the brave new world of designing

simulation experiments. Discussion paper, no. 2003-01. Tilburg: Tilburg

University.

Law, A. M., & Kelton, W. D. (1982). Simulation modeling and analysis. McGraw-

Hill series in industrial engineering and management science. New York:

McGraw-Hill.

Libxml Version 0.3.8.4 [Computer Software]. Open Source, Retrieved May 15th,

2007 from http://rubyforge.org/projects/libxml

Lighttpd Version 1.4.15 [Computer Software]. Open Source, Retrieved May 15th

2007 from http://www.lighttpd.net/

Live Tree [Computer Software]. Open Source, Retrieved August 14th, 2007 from

http://wiki.rubyonrails.org/rails/pages/LiveTree

Mongrel Version 1.0.1 [Computer Software]. Open Source, Retrieved May 15th

2007 from http://mongrel.rubyforge.org/

Mossberger, D., & Jin, T. (1998). Httperf: A tool for Measuring Web Server

Performance. Performance Evaluation Review, 26(3), 31-37.

Netbeans Version 5.5.1 [Computer Software]. Santa Clara, CA: Sun

Microsystems.

Process Modeler Version 7.0 [Computer Software]. Santa Clara, Ca: Savion

Project Albert (2005). Retrieved June 19, 2007, from

http://www.projectalbert.org/index.html

Rauhut, M. W. (1999) Automating a Study Question Methodology to Enhance

Analysis in High Level Architecture. Unpublished master’s thesis, Naval

Postgraduate School, Monterey, CA.

Rockwell Arena Version 11.0 [Computer Software]. Milwaukee, WI :Rockwell

Automation.

89

Ruby Development Tools Version 0.8 [Computer Software]. RubyPeople

Retrieved May 15th 2007 from http://rubyeclipse.sourceforge.net V0.8

Rusco, M. S. (2003, August 8). Using Simulation Software for Design of

Experiment Training. Retrieved July 19, 2007, from

http://www.statease.com/pubs/dragracing.pdf

Sanchez, S. NOLH designs spreadsheet. Version 4 [Computer Software]

http://diana.cs.nps.navy.mil/SeedLab/ [accessed 03/05/2007]

Subclipse Version 1.2.0 [Computer Software]. Open Source, Retrieved May 14th

2007 from http://subclipse.tigris.org/

The Free On-line Dictionary of Computing. Retrieved September 08, 2007, from

http://dictionary.reference.com/browse/usability

Tiller [Computer Software]. Honolulu, HI: Referentia.

90

THIS PAGE INTENTIONALLY LEFT BLANK

91

BIBLIOGRAPHY

Clements, P., Kazman, R., & Klein, M. (2002). Evaluating software architectures:

methods and case studies. SEI series in software engineering. Boston:

Addison-Wesley.

Fowler, M., & Scott, K. (2000). UML distilled: a brief guide to the standard object

modeling language. Reading, Mass: Addison Wesley.

Nance, R. E., & Sargent, R. G. (2002). ARTICLES - Perspectives on the

Evolution of Simulation. Operations Research. 50(1), 161.

Thomas, D., Fowler, C., & Hunt, A. (2004). Programming Ruby: The Pragmatic

Programmers' Guides (2nd ed.). Raliegh: Pragmatic Bookshelf.

Thomas, D., & Heinemeier-Hansson, D. (2006). Agile Web Development with

Rails (2nd ed.). Raliegh: Pragmatic Bookshelf.

92

THIS PAGE INTENTIONALLY LEFT BLANK

93

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Professor Paul Sanchez
Naval Postgraduate School
Monterey, California

4. Mr. Jack Jackson
TRAC Monterey
Monterey, California

5. MAJ John Alt
TRAC Monterey
Monterey, California

